Preferences help
enabled [disable] Abstract
Number of results
2017 | 131 | 1 | 7-9
Article title

Characteristics and Ceramic Properties of Turgutlu Clay

Title variants
Languages of publication
The aim of this study is to characterize and determine the ceramic properties of the Turgutlu clay fired at various temperatures. For this purpose, the clay sample was first characterized by chemical analysis, X-ray diffraction, and plasticity measurements. The mineralogical composition of the Turgutlu clay was dominated by quartz, illite, mica, hematite, calcite, kaolinite, microcline, and smectite. The data obtained from plasticity tests indicated that the Turgutlu clay was very high plastic clay. To evaluate firing behaviors, pressed clay samples were fired separately at temperatures between 850 and 1100°C. Fired specimens were evaluated by water absorption, linear shrinkage, bulk density, flexural strength, X-ray diffraction, and scanning electron microscopy. Significant changes were observed such as an increase in the linear shrinkage and flexural strength together with a decrease in the water absorption above 1050°C. Based on the technological characteristics, the Turgutlu clay could be used in the manufacture of structural ceramics.
Physical description
  • [1] H.H. Murray, Clay Miner. 34, 39 (1999)
  • [2] M.I. Carretero, M. Dondi, B. Fabbri, M. Raimondo, Appl. Clay Sci. 20, 301 (2002), doi: 10.1016/S0169-1317(01)00076-X
  • [3] P. Pialy, C. Nkoumbou, F.V. Ras, A Razafıtıanamaharavo, O. Barres, M. Pelletier, G. Ollivier, I. Bihannic, D. Njopwouo, J. Yvon, J.P. Bonnet, Clay Miner. 43, 415 (2008), doi: 10.1180/claymin.2008.043.3.07
  • [4] H. Baccour, M. Medhioub, F. Jamoussi, T. Mhiri, J. Mater. Process. Tech. 209, 2812 (2009), doi: 10.1016/j.jmatprotec.2008.06.055
  • [5] B.K. Ngun, H. Mohamad, S.K. Sulaiman, K. Okada, Z.A. Ahmad, Appl. Clay Sci. 53, 33 (2011), doi: 10.1016/j.clay.2011.04.017
  • [6] I.M. Bakr, Appl. Clay Sci. 52, 333 (2011), doi: 10.1016/j.clay.2011.03.002
  • [7] F. Pardo, S. Meseguer, M.M. Jordán, T. Sanfeliu, I. González, Appl. Clay Sci. 51, 147 (2011), doi: 10.1016/j.clay.2010.11.022
  • [8] D. Lahcen, E.E. Hicham, S. Latifa, A. Abderrahmane, B. Jamal, W. Mohamed, E. Meriam, F. Nathalie, Appl. Clay Sci. 102, 139 (2014), doi: 10.1016/j.clay.2014.09.029
  • [9] SPO, Eighth Five Year Development Program. Mining Customs Commission Report Sub-Commission of Industrial Raw Materials Building Materials I (Plaster - Lime - Sand - Gravel -Gravel - Paint Soils - Brick Tile) Study Group Report, SPO:2615, Article:626, Ankara 2001 (in Turkish)
  • [10] M. Çolak, Ind. Ceram. 24, 15 (2004)
  • [11] İ. Özkan, M. Çolak, R.E. Oyman, Appl. Clay Sci. 49, 420 (2010), doi: 10.1016/j.clay.2009.08.021
  • [12] F.A.C. Milheiro, M.N. Freire, A.G.P. Silva, J.N.F. Holanda, Ceram. Int. 31, 757 (2005), doi: 10.1016/j.ceramint.2004.08.010
  • [13] H.B. Zghal, M. Medhioub, T. Mhiri, J. Ceram. Process. Res. 13, 202 (2012)
  • [14] M. Medhioub, H. Baccour, F. Jamoussi, T. Mhiri, J. Ceram. Process. Res. 11, 209 (2010)
  • [15] ASTM, D 4318-10. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils, 2010
  • [16] TS EN ISO 10545-3. Ceramic Tiles - Part 3: Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density, 2000
  • [17] TS EN ISO 10545-4. Ceramic Tiles - Part4: Determination of Modulus of Rupture and Breaking Strength, 2000
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.