Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1401-1405

Article title

Acousto-Electric Interaction in Magnetised Piezoelectric Semiconductor Quantum Plasma

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Amplification of an acoustic wave is considered in magnetised piezoelectric n-type semiconductor plasma under quantum hydrodynamic regime. The important ingredients of this study are the inclusion of quantum diffraction effect via the Bohm potential, statistical degeneracy pressure, and externally applied magnetostatic field in the momentum balance equation of the charged carriers. A modified dispersion relation is derived for evolution of acoustic wave by employing the linearization technique. Detailed analysis of quantum modified dispersion relation of acoustic wave is presented. For a typical parameter range, relevant to n-InSb at 77 K, it is found that the non-dimensional quantum parameter H reduces the gain while magnetic field enhances the gain of acoustic wave. The crossover from attenuation to amplification occurs at (ϑ₀/ϑₛ)=1 and this crossover point is found to be unaffected by quantum correction and magnetic field. It is also found that the maximum gain point shifts towards lower drift velocity regime due to the presence of magnetic field while quantum parameter H shifts this point towards higher drift velocity. Numerical results on the acoustic gain per radian and acoustic gain per unit length are also illustrated. Our results could be useful in understanding acoustic wave propagation in magnetised piezoelectric semiconductor in quantum regime.

Keywords

Contributors

author
  • School of Studies in Physics, Vikram University, Ujjain 456010, India
author
  • School of Studies in Physics, Vikram University, Ujjain 456010, India

References

  • [1] S. Ali, W.M. Moslem, P.K. Shukla, R. Schlickeiser, Phys. Plasmas 14, 082307 (2007), doi: 10.1063/1.2750649
  • [2] P.K. Shukla, B. Eliasson, Phys.-Usp. 53, 51 (2010), doi: 10.3367/UFNe.0180.201001b.0055
  • [3] P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 83, 885 (2011), doi: 10.1103/RevModPhys.83.885
  • [4] I. Zeba, M.E. Yahia, P.K. Shukla, W.M. Moslem, Phys. Lett. A 376, 2309 (2012), doi: 10.1016/j.physleta.2012.05.049
  • [5] M.R. Amin, Phys. Plasmas 22, 032303 (2015), doi: 10.1063/1.4913985
  • [6] K. Seeger, in: Semiconductor Physics, 9th ed., Springer, Berlin 2004, doi: 10.1007/978-3-662-09855-4
  • [7] G. Manfredi, Fields Inst. Commun. 46, 263 (2005)
  • [8] A. Rasheed, M. Jamil, M. Siddique, F. Huda, Y.D. Jung, Phys. Plasmas 21, 062107 (2014), doi: 10.1063/1.4883224
  • [9] M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006), doi: 10.1103/RevModPhys.78.591
  • [10] S. Ghosh, S. Dubey, R. Vanshpal, Phys. Lett. A 375, 43 (2010), doi: 10.1016/j.phys.leta.2010.10.018
  • [11] M. Akbari-Moghanjoughi, Phys. Plasmas 18, 012701 (2011), doi: 10.1063/1.3533425
  • [12] S. Chandra, S.N. Paul, B. Ghosh, Ind. J. Pure Appl. Phys. 50, 314 (2012)
  • [13] F. Hass, A. Bret, Europhys. Lett. 97, 26001 (2012), doi: 10.1209/0295-5075/97/26001
  • [14] S. Ghosh, S. Dubey, R. Vanshpal, Chin. J. Phys. 51, 1240 (2013)
  • [15] M.R. Amin, Astrophys. Space Sci. 359, 1 (2015), doi: 10.1007/s10509-015-2464-7
  • [16] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York 2007, doi: 10.1007/0-387-37825-1
  • [17] N. Crouseilles, P.A. Hervieux, G. Manfredi, Phys. Rev. B 78, 155412 (2008), doi: 10.1103/PhysRevB.78.155412
  • [18] R. Vanshpal, S. Dubey, S. Ghosh, J. Phys. Confer. Ser. 365, 012045 (2012), doi: 10.1088/1742-6596/365/1/012046
  • [19] Y. Wang, B. Eliasson, Phys. Rev. B 89, 205316 (2014), doi: 10.1103/Phys.RevB.89.205316
  • [20] A. Rasheed, M. Jamil, F. Areeb, M. Siddique, M. Salimullah, J. Phys. D Appl. Phys. 49, 175109 (2016), doi: 10.1088/0022-3727/49/17/175109
  • [21] J.S. Yang, H.G. Zhou, Acta Mech. 172, 113 (2004), doi: 10.1007/s00707-004-0140-2
  • [22] S. Ghosh, P. Khare, Ind. J. Pure Appl. Phys. 44, 183 (2006)
  • [23] M. Willatzen, J. Christensen, Phys. Rev. B 89, 041201 (2014), doi: 10.1103/PhysRevB.89.041201
  • [24] V.K. Gokhale, M.R. Zadeh, Sci. Rep. 4, 5617 (2014), doi: 10.1038/srep05617
  • [25] P. Li, F. Jin, J. Yang, Smart Mater. Struct. 24, 025021 (2015), doi: 10.1088/0964-1726/24/2/025021
  • [26] A. Sharma, N. Nimje, N. Yadav, S. Ghosh, Int. J. Appl. Phys. 4, 37 (2014)
  • [27] P. Dubey, S. Ghosh, Acta Acust. United AC 102, 436 (2016), doi: 10.3813/AAA.918962
  • [28] J. Christensen, M. Willatzen, V.R. Velasco, M.H. Lu, Phys. Rev. Lett. 116, 207601 (2016), doi: 10.1103/PhysRevLett.116.207601
  • [29] M.C. Steele, B. Vural, Wave Interactions in Solid State Plasmas, McGraw Hill, New York 1969
  • [30] D.L. White, J. Appl. Phys. 33, 2547 (1962), doi: 10.1063/1.1729015

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n622kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.