Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1380-1384

Article title

Solvent Effects on the Optical Properties of PEG-SH and CTAB Capped Gold Nanorods

Content

Title variants

Languages of publication

EN

Abstracts

EN
Cetyltrimethylammonium bromide (CTAB) and (11-mercaptoundecyl)tetra(ethylene glycol) (PEG-SH) capped gold nanorods were prepared and dispersed in water and dimethyl sulfoxide (DMSO). Transmission electron microscopy images reveal that changing the solvent from water to DMSO cause that nanoparticles tend to organize (PEG-SH ligand) or aggregate (CTAB ligand). UV-vis absorbance spectra reveal that ligand as well as solvent exchange cause positive solvatochromic shifts and changes in the relative extinction values. After the transfer of nanorods from a solvent of lower to higher refraction index a red shift of the longitudinal surface plasmon resonance band is observed. This effect is more pronounced in the case of PEG-SH capped nanorods. Time resolved pump-probe measurements revealed that both ligand and solvent exchange influence the excited state relaxation times, however, a more pronounced change is induced by the ligand exchange. Two-photon excited fluorescence spectra of PEG-SH covered nanorods showed a slight intensity increase when moving from water to DMSO solvent.

Keywords

EN

Contributors

author
  • Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • [1] C. Reichardt, T. Welton, Solvents and Solvent Effects in Organic Chemistry, Wiley, Weinheim 2011
  • [2] C. Reichardt, Green Chem. 7, 339 (2005), doi: 10.1039/B500106B
  • [3] C. Reichardt, Chem. Rev. 94, 2319 (1994), doi: 10.1021/cr00032a005
  • [4] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer Sci. and Business Media, New York 2007
  • [5] M. Wielgus, W. Bartkowiak in: Handbook of Solvents. Properties, Vol. 1, Ed. G. Wypych, ChemTec Publishing, Toronto 2014, p. 695
  • [6] C.A. Leatherdale, M.G. Bawendi, Phys. Rev. B 63, 165315 (2001), doi: 10.1103/PhysRevB.63.165315
  • [7] S. Underwood, P. Mulvaney, Langmuir 10, 3427 (1994), doi: 10.1021/la00022a011
  • [8] M. Lista, D.Z. Liu, P. Mulvaney, Langmuir 30, 1932 (2014), doi: 10.1021/la404569h
  • [9] S. Leekumjorn, S. Gullapalli, M.S. Wong, J. Phys. Chem. B 116, 13063 (2012), doi: 10.1021/jp307985c
  • [10] Y. Li, X. Wang, S. Xu, W. Xu, Phys. Chem. Chem. Phys. 15, 2665 (2013), doi: 10.1039/C3CP44309D
  • [11] I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A.S. Goldmann, A.H.E. Müller, O. Ikkala, R.H.A. Ras, Angew. Chem. Int. Ed. 48, 2122 (2009), doi: 10.1002/anie.200806210
  • [12] H. Chen, X. Kou, Z. Yang, W. Ni, J. Wang, Langmuir 24, 5233 (2008), doi: 10.1021/la800305j
  • [13] T. Zhao, X.-F. Jiang, N. Gao, S. Li, N. Zhou, R. Ma, Q.-H. Xu, J. Phys. Chem. B 117, 15576 (2013), doi: 10.1021/jp405929w
  • [14] Y. Liao, X. Zhou, X. Xie, Q. Yu, J. Mater. Sci. Mater. Electron. 24, 4427 (2013), doi: 10.1007/s10854-013-1420-y
  • [15] M.K. Kavitha, P.C. Haripadmam, P. Gopinath, B. Krishnan, H. John, Mater. Res. Bull. 48, 1967 (2013), doi: 10.1016/j.materresbull.2013.01.052
  • [16] M.Z. Rong, M.Q. Zhang, H.C. Liang, H.M. Zeng, Appl. Surf. Sci. 228, 176 (2004), doi: 10.1016/j.apsusc.2004.01.012
  • [17] S.K. Ghosh, S. Nath, S. Kundu, K. Esumi, T. Pal, J. Phys. Chem. B 108, 13963 (2004), doi: 10.1021/jp047021q
  • [18] K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003), doi: 10.1021/jp026731y
  • [19] S.A. Fischer, A.M. Crotty, S.V. Kilina, S.A. Ivanov, S. Tretiak, Nanoscale 4, 904 (2012), doi: 10.1039/C2NR11398H
  • [20] S. Goel, K.A. Velizhanin, A. Piryatinski, S.A. Ivanov, S. Tretiak, J. Phys. Chem. C 116, 3242 (2012), doi: 10.1021/jp208732k
  • [21] S. Eustis, M.A. El-Sayed, Chem. Soc. Rev. 35, 209 (2006), doi: 10.1039/B514191E
  • [22] S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999), doi: 10.1021/jp9917648
  • [23] H. Chen, L. Shao, Q. Li, J. Wang, Chem. Soc. Rev. 42, 2679 (2013), doi: 10.1039/C2CS35367A
  • [24] J. Olesiak-Banska, M. Gordel, R. Kolkowski, K. Matczyszyn, M. Samoc, J. Phys. Chem. C 116, 13731 (2012), doi: 10.1021/jp301821p
  • [25] M. Gordel, J. Olesiak-Banska, K. Matczyszyn, C. Nogues, M. Buckle, M. Samoc, Phys. Chem. Chem. Phys. 16, 71 (2013), doi: 10.1039/c3cp53457j
  • [26] J. Olesiak-Banska, M. Gordel, K. Matczyszyn, V. Shynkar, J. Zyss, M. Samoc, Nanoscale 5, 10975 (2013), doi: 10.1039/c3nr03319h
  • [27] X. Wang, Z. Mei, Y. Wang, L. Tang, Talanta 136, 1 (2015), doi: 10.1016/j.talanta.2014.11.023
  • [28] L.T. Lanh, T.T. Hoa, N.D. Cuong, D.Q. Khieu, D.T. Quang, N. Van Duy, N.D. Hoa, N. Van Hieu, J. Alloys Comp. 635, 265 (2015), doi: 10.1016/j.jallcom.2015.02.146
  • [29] X.-D. Wang, Z.-C. Luo, H. Liu, N. Zhao, M. Liu, Y.-F. Zhu, J.-P. Xue, A.-P. Luo, W.-C. Xu, Opt. Commun. 346, 21 (2015), doi: 10.1016/j.optcom.2015.02.002
  • [30] C.-Z. Li, K.B. Male, S. Hrapovic, J.H.T. Luong, Chem. Commun. 31, 3924 (2005), doi: 10.1039/B504186D
  • [31] C. Yu, J. Irudayaraj, Anal. Chem. 79, 572 (2007), doi: 10.1021/ac061528a
  • [32] H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, Proc. Natl. Acad. Sci. U.S.A. 102, 15752 (2005), doi: 10.1073/pnas.0504892102
  • [33] N.J. Durr, T. Larson, D.K. Smith, B.A. Korgel, K. Sokolov, A. Ben-Yakar, Nano Lett. 7, 941 (2007), doi: 10.1021/nl062962v
  • [34] C.-C. Chen, Y.-P. Lin, C.-W. Wang, H.-C. Tzeng, C.-H. Wu, Y.-C. Chen, C.-P. Chen, L.-C. Chen, Y.-C. Wu, J. Am. Chem. Soc. 128, 3709 (2006), doi: 10.1021/ja0570180
  • [35] Q. Wei, J. Ji, J. Shen, Macromol. Rapid Commun. 29, 645 (2008), doi: 10.1002/marc.200800009
  • [36] T. Zhao, X. Shen, L. Li, Z. Guan, N. Gao, P. Yuan, S.Q. Yao, Q.-H. Xu, G.Q. Xu, Nanoscale 4, 7712 (2012), doi: 10.1039/C2NR32196C
  • [37] X.H. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128, 2115 (2006), doi: 10.1021/ja057254a
  • [38] T.K. Sau, C.J. Murphy, Langmuir 20, 6414 (2004), doi: 10.1021/la049463z
  • [39] C. Wu, Q.-H. Xu, Langmuir 25, 9441 (2009), doi: 10.1021/la900646n
  • [40] L. Vigderman, B.P. Khanal, E.R. Zubarev, Adv. Mater. 24, 4811 (2012), doi: 10.1002/adma.201201690
  • [41] http://www.sigmaaldrich.com
  • [42] E. Prodan, A. Lee, P. Nordlander, Chem. Phys. Lett. 360, 325 (2002), doi: 10.1016/S0009-2614(02)00850-3

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n618kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.