PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1373-1379
Article title

Structural, Morphological and Optical Study of Bismuth and Zinc Co-Doped Yttrium Oxide Prepared by Solvothermal and Wet Chemical Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
Yttrium oxide (Y₂O₃) is the most familiar yttrium compound, which is popularly known as host for ion doping of other rare earth elements. Bismuth ion (Bi³⁺) is well known as an activator and sensitizer in several particular phosphors. Zinc oxide (ZnO) nanomaterial, having a wide band gap, is one of the promising candidates for general illumination applications due to its high optical transparency and color tenability bismuth (Bi) and zinc (Zn) co-doped Y₂O₃ samples are synthesized by simple precipitation techniques like solvothermal and wet chemical methods. The prepared samples were characterized using X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectra, ultraviolet-visible absorbance spectroscopy and photoluminescence spectrophotometry. Ultraviolet-visible absorption studies showed absorption only around 340 nm whereas photoluminescence shows peaks around 500 nm, 680 nm, and 1020 nm for Bi and Zn co-doped Y₂O₃. The photoluminescence spectrum shows emission in blue region (500 nm) due to Zn dopant and red and near infrared region (680 and 1020 nm) due to Bi dopant. This is a new material which can effectively work as an efficient and cheap red phosphor.
Keywords
EN
Contributors
author
  • Department of Physics, Jansons Institute of Technology, Coimbatore, Tamilnadu, India
author
  • Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamilnadu, India
References
  • [1] M.E. Globus, B.V. Grinev, Inorganic Scintillators. New and Traditional Materials, Akta, Kharkov 2001 (in Russian)
  • [2] O.M. Bordun, V.V. Dmitruk, J. Appl. Spectrosc. 75, 208 (2008), doi: 10.1007/s10812-008-9029-2
  • [3] A. Novoselov, A. Yoshikawa, M. Nikl, N. Solovieva, T. Fukuda, Cryst. Res. Technol. 40, 419 (2005), doi: 10.1002/crat.200410360
  • [4] A.V. van de Gaats, G. Blasse, Chem. Phys. Lett. 243, 559 (1995), doi: 10.1016/0009-2614(95)00897-D
  • [5] S. Qiang, C. Barthou, J.P. Denis, F. Pelle, B. Blanzat, J. Lumin. 28, 1 (1983), doi: 10.1016/0022-2313(83)90021-2
  • [6] I.A. Meriloo, R.V. Melenina, Tr. IFA AN ESSR 39, 250 (1972)
  • [7] G. Bhavani, S. Ganesan, Int. J. Phys. 1, 32 (2012)
  • [8] A. Hristea, E.J. Popovici, L. Muresan, R. Grecu, E. Indrea, M. Vasilescu, in: Romopto 2003: Seventh Conf. on Optics, International Society for Optics and Photonics, 2004, p. 781
  • [9] L. Muresan, E.J. Popovici, A. Hriste, E. Indrea, M. Vasilescu, in Ref. [8], p. 775
  • [10] E.J. Popovici, L. Muresan, H. Amalia, E. Indrea, M. Vasilescu, J. Alloys Comp. 434-435, 809 (2007), doi: 10.1016/j.jallcom.2006.08.312
  • [11] L. Muresan, E.J. Popovici, R. Grecu, L.B. Tudoran, J. Alloys Comp. 471, 421 (2009), doi: 10.1016/j.jallcom.2008.03.100
  • [12] C. García, L. Diaz-Torres, P. Salas, M. Guzman, C. Angeles-Chavez, Mater. Sci. Semicond. Process. 37, (2015), doi: 10.1016/j.mssp.2015.02.032
  • [13] M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Nanoscale Res. Lett. 7, 11 (2012), doi: 10.1186/1556-276X-7-1
  • [14] X. Hao, E. Cho, C. Flynn, Y. Shen, S. Park, G. Conibeer, M. Green, Solar En. Mater. Solar Cells 93, 273 (2009), doi: 10.1016/j.solmat.2008.10.017
  • [15] V. Fruth, A. Ianculescu, G. Voicu, J. Eur. Ceram. Soc. 26, 14 (2006), doi: 10.1016/j.jeurceramsoc.2006.02.019
  • [16] X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 404, 59 (2000), doi: 10.1038/35003535
  • [17] I. Pal, A. Agarwal, S. Sanghi, M. Aggarwal, Indian J. Pure Appl. Phys. 51, 18 (2013)
  • [18] S. Zhang, R. Xiao, J. Appl. Phys. 83, 3842 (1998), doi: 10.1063/1.366615
  • [19] R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish, M.C. Prabhakara, J. Nanotechnol. 2014, 1 (2014), doi: 10.1155/2014/924797
  • [20] L.L. Beecroft, C.K. Ober, Chem. Mater. 9, 1302 (1997), doi: 10.1021/cm960441a
  • [21] S. Kumar, N. Verma, M. Singla, Chalcogen. Lett. 8, 561 (2011) http://chalcogen.ro/561_Kumar.pdf
  • [22] J. Dharma, A. Pisal, C. Shelton, Application Note Shelton, CT, Perkin-Elmer, 2009 http://www.perkinelmer.com/lab-solutions/resources/docs/APP_UVVISNIRMeasureBandGapEnergyValue.pdf
  • [23] R. Karmakar, S. Neogi, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 263, 671 (2012), doi: 10.1016/j.apsusc.2012.09.133
  • [24] J.I. Pankove, J. Electrochem. Soc. 119, 156C (1972), doi: 10.1149/1.2404256
  • [25] G. Bhavani, S. Ganesan, Indian J. Pure Appl. Phys. 54, 307 (2016) http://14.139.47.23/index.php/IJPAP/article/view/10137/789
  • [26] P.T. Landsberg, Recombination in Semiconductors, Cambridge University Press, Cambridge 1991, doi: 10.1017/CBO9780511470769
  • [27] T. Tatsumi, M. Fujita, N. Kawamoto, M. Sasajima, Y. Horikoshi, Jpn. J. Appl. Phys. 43, 2602 (2004), doi: 10.1143/JJAP.43.2602
  • [28] B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, E. Dianov, Appl. Phys. B 98, 455 (2010), doi: 10.1007/s00340-009-3689-3
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n617kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.