Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1358-1362
Article title

Temperature and Frequency Dependence Electrical Properties of Zn_{1-x}Ca_{x}O Nanoceramic

Title variants
Languages of publication
This work reports the temperature and frequency dependence electrical properties of Ca doped ZnO (Zn_{1-x}Ca_{x}O, x=0.01) nanoceramic synthesized by solid state reaction method. The X-ray spectra show that the synthesized powder has hexagonal wurtzite structure with space group P6₃mc. The average crystallite size decreases with Ca doping. The increase in oxygen positional parameter (u) indicates lattice distortion in the crystal structure. Doping with Ca caused a slight shift in the (101) plane peak towards lower diffraction angle. The formation of pores in field emission scanning electron microscopy micrograph may be due to the defect created by Ca substitution. The electrical property was investigated by impedance spectroscopy in the temperature range 300-500°C. The synthesized sample shows temperature dependence relaxation phenomena and negative temperature coefficient of resistance effects. Electrical conductivity (σ_{ac}) increases with increase in temperature as well as with frequency due to the drift mobility of electrons and hole by hopping conduction. Dielectric constant was found to decrease with increase in frequency and temperature. This decreases drastically in the magnitude of approximately < 10 times than the corresponding undoped one.
Physical description
  • [1] S. Maensiri, C. Masingboon, V. Promarak, S. Seraphin, Opt. Mater. 29, 1700 (2007), doi: 10.1016/j.optmat.2006.09.011
  • [2] B.K. Das, T. Das, K. Parashar, S.K.S. Parashar, Appl. Sci. Adv. Mater. Int. 1, 17 (2014)
  • [3] S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Physica B 407, 1223 (2012), doi: 10.1016/j.physb.2012.01.103
  • [4] Y. Liu, J. Wang, C. Xu, Z. Si, S. Xu, S. Shi, J. Mater. Sci. Technol. 30, 860 (2014), doi: 10.1016/j.jmst.2014.07.014
  • [5] D. Li, J.F. Huang, L.Y. Cao, J.Y. Li, O. Yang, C.Y. Yao, Ceram. Int. 40, 2647 (2014), doi: 10.1016/j.ceramint.2013.10.061
  • [6] N.R. Yogamalar, A. Chandra Bose, Prog. Nanotech. Nanomater. 2, 1 (2013)
  • [7] R. Udayabhaskar, R.V. Mangalaraja, B. Karthikeyan, J. Mater. Sci. Mater. Electron. 24, 3183 (2013), doi: 10.1007/s10854-013-1225-z
  • [8] S. Muthukumaran, R. Gopalkrishnan, Opt. Mater. 34, 1946 (2012), doi: 10.1016/j.optmat.2012.06.004
  • [9] S.B. Rana, P. Singh, A.K. Sharma, A.W. Carbonari, R. Dogra, J. Optoelectron. Adv. Mater. 12, 257 (2010)
  • [10] P. Kumar, Y. Kumar, H.K. Malik, S. Annapoorni, S. Gautam, K. Hwa Chae, K. Asokan, Appl. Phys. A 114, 453 (2013), doi: 10.1007/s00339-013-7664-9
  • [11] U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005), doi: 10.1063/1.1992666
  • [12] C. Venkataraju, G. Sathishkumar, K. Sivakumar, J. Alloys Comp. 498, 203 (2010), doi: 10.1016/j.jallcom.2010.03.160
  • [13] S. Sen, P. Pramanik, R.N.P. Choudhury, Appl. Phys. A 82, 549 (2006), doi: 10.1007/s00339-005-3330-1
  • [14] F.S.H. Abu-Samaha, M.I.M. Ismail, Mater. Sci. Semicond. Process 19, 50 (2014), doi: 10.1016/j.mssp.2013.11.027
  • [15] A.M. Abo El Ata, M.K. El Nimra, S.M. Attia, D. El Kony, A.H. Al-Hammadi, J. Magn. Magn. Mater. 297, 33 (2006), doi: 10.1016/j.jmmm.2005.01.085
  • [16] S.K.S. Parashar, B.S. Murty, S. Repp, S. Weber, E. Erdem, J. Appl. Phys. 111, 113712 (2012), doi: 10.1063/1.4725478
  • [17] E. Erdem, J. Alloys Comp. 605, 34 (2014), doi: 10.1016/j.jallcom.2014.03.157
  • [18] H. Kaftelen, K. Ocakoglu, R. Thomann, S. Tu, S. Weber, E. Erdem, Phys. Rev. B 86, 014113 (2012), doi: 10.1103/Phys Rev B.86.014113
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.