Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 6 | 1352-1357
Article title

Strain-Dependent Damping of Ti-10V-2Fe-3Al at Room Temperature

Title variants
Languages of publication
The Ti-10V-2Fe-3Al alloy is advantageous over other titanium grades due to its high tensile strength and its high resistance against creep, cracking, and corrosion. The investigated alloy was hammer-forged inducing high strain rates in the material at a temperature of 800°C and underwent different cooling procedures. Three in that way thermomechanically treated specimens were prepared for subsequent study of the vibration behaviour of the material with the help of non-destructive, contact-free acoustic measurements. Resulting time-dependent decaying acoustic signals were analysed to investigate the dependence of the material damping behaviour on the individual downstream thermal treatment procedure and, ultimately, on the microstructural changes.
Physical description
  • [1] G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara Rao, Mater. Des. 47, 323 (2013), doi: 10.1016/j.matdes.2012.11.053
  • [2] M. Jackson, N.G. Jones, D. Dye, R.J. Dashwood, Mater. Sci. Eng. A 501, 248 (2009), doi: 10.1016/j.msea.2008.09.071
  • [3] RMI Titanium Company, Titanium Alloy Guide, RTI International Metals, January 2000. Available: (accessed 1 September 2015)
  • [4] M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, in: Titanium and Titanium Alloys - Fundamentals and Applications, Eds. C. Leyens, M. Peters, Wiley-VCH, Weinheim 2003, p. 1
  • [5] P. Skubisz, M. Packo, K. Mordalska, T. Skowronek, Adv. Mater. Res. 845, 96 (2014), doi: 10.4028/
  • [6] Y.K. Favstov, Y.A. Samoilov, Met. Sci. Heat Treat. 25, 679 (1983), doi: 10.1007/BF00707287
  • [7] I. Weiss, S.L. Semiatin, Mater. Sci. Eng. A 243, 46 (1998), doi: 10.1016/S0921-5093(98)01155-1
  • [8] S. Ankem, C.A. Greene, Mater. Sci. Eng. A 263, 127 (1999), doi: 10.1016/S0921-5093(98)01170-8
  • [9] S. Bruschi, S. Poggio, F. Quadrini, M.E. Tata, Mater. Lett. 58, 3622 (2004), doi: 10.1016/j.matlet.2004.06.058
  • [10] Titanium, Physical Metallurgy, Processing, and Applications, Ed. F.H. Froes, ASM International, Materials Park, Ohio, USA 2015
  • [11] J. Göken, S. Fayed, P. Skubisz, in: Proc. Int. Conf. on Lightweight Design of Marine Structures (LIMAS 2015), ASRANet Ltd, Glasgow (Scotland) 2015, p. 156
  • [12], retrieval dated 3 September 2015, 'Microflown™ Technologies, Charting sound fields, Manual PU - regular, MFPA-V1.0 2014'
  • [13] J. Göken, J. Swiostek, H. Hurdelbrink, U. Keil, Acta Metall. Sin. (Engl. Lett.) 26, 113 (2013), doi: 10.1007/s40195-012-0155-8
  • [14] I.S. Golovin, H.-R. Sinning, J. Göken, W. Riehemann, Solid State Phenom. 89, 267 (2003), doi: 10.4028/
  • [15] W. Riehemann, Metallic Materials with Extreme Internal Friction and their Measurement, Papierflieger Verlag, Clausthal-Zellerfeld 1996 (in German)
  • [16] F. Trendelenburg, Introduction into Acoustics, Springer, Berlin 1939 (in German), doi: 10.1007/978-3-662-05524-3
  • [17] J. Göken, W. Riehemann, Mater. Sci. Eng. A 324, 127 (2002), doi: 10.1016/S0921-5093(01)01294-1
  • [18] J.S. Koehler, in: Imperfections in Nearly Perfect Crystals, Eds. W. Shockley, J.H. Hollomon, R. Maurer, F. Seitz, Wiley, New York 1952, p. 197
  • [19] A.V. Granato, K. Lücke, J. Appl. Phys. 27, 583 (1956), doi: 10.1063/1.1722436
  • [20] P.A. Bleasdale, D.J. Bacon, in: Internal Friction and Ultrasonic Attenuation in Solids: Proceedings of the Third European Conf., Ed. C.C. Smith, Pergamon Press, Oxford 1980, p. 173
  • [21] Z. Trojanová, P. Lukáč, W. Riehemann, B.L. Mordike, Mater. Sci. Eng. A 226-228, 867 (1997), doi: 10.1016/S0921-5093(97)80090-1
  • [22] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York 1972
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.