Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Convection in horizontally vibrated granular systems is significant for scientists and engineers for their importance in the field of mining, geo-physics, and pharmaceutical etc. This research work studied three types of convection rolls, "Homogeneous convection roll", "lower-right diagonal convection roll" and "upper-right diagonal convection roll" which occurred in a square container filled with binary granular particles mixture of sized d=(4.0±0.2) mm and d=(8.0±0.2) mm. Container was vibrated horizontally with low frequencies f and low dimensionless acceleration Γ. Helical movement was observed along the walls perpendicular to direction of motion while straight-line movement along the walls horizontal to direction of motion. Helical and straight-line movements of particles along the walls are the part of convection rolls. A heap appeared due to vibration, which has dominant effect on the convection rolls. Heap position is function of frequency f and dimensionless accelerations Γ.
Discipline
- 83.80.Fg: Granular solids
- 47.57.Qk: Rheological aspects
- 47.52.+j: Chaos in fluid dynamics(see also 05.45.-a Nonlinear dynamics and chaos in Statistical physics, thermodynamics, and nonlinear dynamical systems)
- 47.57.Gc: Granular flow
- 45.70.-n: Granular systems(see also 05.65.+b Self-organized systems)
Journal
Year
Volume
Issue
Pages
1336-1342
Physical description
Dates
published
2016-12
received
2016-07-15
Contributors
author
- School of Mathematics and Physics, University of Science and Technology, Beijing, 10083, China
author
- School of Mathematics and Physics, University of Science and Technology, Beijing, 10083, China
author
- School of Mathematics and Physics, University of Science and Technology, Beijing, 10083, China
author
- School of Mathematics and Physics, University of Science and Technology, Beijing, 10083, China
author
- School of Energy and Environmental Engineering, University of Science and Technology, Beijing, 10083, China
References
- [1] A.P.J. Breu, H.-M. Ensner, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 90, 014302 (2003), doi: 10.1103/PhysRevLett.90.014302
- [2] Y. Nahmad-Molinari, G. Canul-Chay, J.C. Ruiz-Suárez, Phys. Rev. E 68, 041301 (2003), doi: 10.1103/PhysRevE.68.041301
- [3] Yan, X. Shi, Q. Hou, M. Lu, K. Chan, C. K. Phys. Rev. Lett. 91, 014302 (2003), doi: 10.1103/PhysRevLett.91.014302
- [4] M.A. Naylor, M.R. Swift, P.J. King, Phys. Rev. E 68, 012301 (2003), doi: 10.1103/PhysRevE.68.012301
- [5] M. Schröter, S. Ulrich, J. Kreft, J.B. Swift, H.L. Swinney, Phys. Rev. E 74, 011307 (2006), doi: 10.1103/PhysRevE.74.011307
- [6] D.C. Hong, P.V. Quinn, S. Luding, Phys. Rev. Lett. 86, 3423 (2001), doi: 10.1103/PhysRevLett.86.3423
- [7] J.A. Both, D.C. Hong, Phys. Rev. Lett. 88, 124301 (2002), doi: 10.1103/PhysRevLett.88.124301
- [8] J.T. Jenkins, D.K. Yoon, Phys. Rev. Lett. 88, 194301 (2002), doi: 10.1103/PhysRevLett.88.194301
- [9] L. Trujillo, M. Alam, H.J. Herrmann, Europhys. Lett. 64, 190 (2003), doi: 10.1209/epl/i2003-00287-1
- [10] M.A. Scherer, V. Buchholtz, T. Pøschel, I. Rehberg, Phys. Rev. E 54, R4560 (1996), doi: 10.1103/PhysRevE.54.R4560
- [11] T. Schnautz, R. Brito, C.A. Kruelle, I. Rehberg, Phys. Rev. Lett. 95, 028001 (2005), doi: 10.1103/PhysRevLett.95.028001
- [12] S. Tennakoon, L. Kondic, R. Behringer, Europhys. Lett. 45, 470 (1999), doi: 10.1209/epl/i1999-00190-3
- [13] G. Metcalfe, S.G.K. Tennakoon, L. Kondic, D.G. Schaeffer, R.P. Behringer, Phys. Rev. E 65, 031302 (2002), doi: 10.1103/PhysRevE.65.031302
- [14] S. Aumaitre, C.A. Kruelle, I. Rehberg, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64, 041305 (2001), doi: 10.1103/PhysRevE.64.041305
- [15] Gallas, Jason AC Herrmann, Hans J Pöschel, Thorsten Sokołowski, Stefan J. Statist. Phys. 82, 443 (1996), doi: 10.1007/BF02189239
- [16] M. Medved, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 021305 (2002), doi: 10.1103/PhysRevE.65.021305
- [17] S.-S. Hsiau, M.-Y. Ou, C.-H. Tai, Adv. Powder Technol. 13, 167 (2002), doi: 10.1163/156855202760166523
- [18] S. Nadler, O. Bonnefoy, J.-M. Chaix, G. Thomas, J.-L. Gelet, Eur. Phys. J. E Soft Matter 34, 66 (2011), doi: 10.1140/epje/i2011-11066-y
- [19] K. Liffman, G. Metcalfe, P. Cleary, in: Proc. 3rd Int. Conf. Powders Grains, Eds.: R.P. Behringer, J.T. Jenkins, A.A.Balkema Publishers, Rotterdam 1997, p. 405
- [20] S.G. Tennakoon, R. Behringer, Phys. Rev. Lett. 81, 794 (1998), doi: 10.1103/PhysRevLett.81.794
- [21] P. Evesque, Contemp. Phys. 33, 245 (1992), doi: 10.1080/00107519208223973
- [22] J. Gallas, H. Herrmann, S. Sokołowski, Phys. Rev. Lett. 69, 1371 (1992), doi: 10.1103/PhysRevLett.69.1371
- [23] K. Liffman, G. Metcalfe, P. Cleary, Phys. Rev. Lett. 79, 4574 (1997), doi: 10.1103/PhysRevLett.79.4574
- [24] M. Medved, D. Dawson, H.M. Jaeger, S.R. Nagel, Chaos Interdiscipl. J. Nonlin. Sci. 9, 691 (1999), doi: 10.1063/1.166443
- [25] C. Saluena, T. Pöschel, Europ. Phys. J. E 1, 55 (2000), doi: 10.1007/s101890050006
- [26] I.S. Aranson, L.S. Tsimring, Rev. Mod. Phys. 78, 641 (2006), doi: 10.1103/RevModPhys.78.641
- [27] F. Rietz, R. Stannarius, Phys. Rev. Lett. 100, 078002 (2008), doi: 10.1103/PhysRevLett.100.078002
- [28] C. Zeilstra, J.G. Collignon, M.A. van der Hoef, N.G. Deen, J.A.M. Kuipers, Powder Technol. 184, 166 (2008), doi: 10.1016/j.powtec.2007.11.037
- [29] T. Pöschel, D.E. Rosenkranz, J.A. Gallas, Phys. Rev. E 85, 031307 (2012), doi: 10.1103/PhysRevE.85.031307
- [30] M. Heckel, A. Sack, J.E. Kollmer, T. Pöschel, Phys. Rev. E 91, 062213 (2015), doi: 10.1103/PhysRevE.91.062213
- [31] C. Windows-Yule, New J. Phys. 18, 033005 (2016)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n610kz