Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 5 | 1229-1232
Article title

Efficient Emission from InAlGaAs Single Quantum Dots with Low Lattice Misfit and AlGaAs Indirect Bandgap Barrier

Title variants
Languages of publication
We report on molecular beam epitaxy growth and properties of rarely studied quaternary In_{0.4}(Al_{0.75}Ga_{0.25})_{0.6}As self-assembled quantum dots, which show strong and efficient emission of red light from single quantum dots. The increased yield is, among others, due to efficient energy transfer from indirect band-gap Al_{0.75}Ga_{0.25}As barriers. To maximize photon energy emitted from quantum dots, low In composition, x_{In} = 0.4 was applied, which also lowered the lattice misfit close to the limit of 2D/3D transition in the Stranski-Krastanov growth mode. Time-resolved micro-photoluminescence shows emission at 650-750 nm. Well-resolved single quantum dot photoluminescence lines (decay time of ≈ 1-2 ns) are observed despite a high concentration ≈ 3×10¹¹ cm¯² of quantum dots. We discuss this observation assuming newly a role of carriers or excitons diffusion/tunneling between quantum dots at high surface concentration of dots and a possible role of lattice disorder inside the dot on the exciton lifetime.
  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-093 Warsaw, Poland
  • [1] Single Quantum Dots, Fundamentals, Applications and New Concepts, Ed. P. Michler, Topics in Applied Physics, Vol. 90, Springer, Berlin 2003, doi: 10.1007/b13751
  • [2] Quantum Dots: Fundamentals, Applications, and Frontiers, Eds. B.A. Joyce, P.C. Kelires, A.G. Naumovets, D.D. Vvedensky, NATO Science Series, Mathematics, Physics and Chemistry, Vol. 190, Springer, The Netherlands 2005, doi: 10.1007/1-4020-3315-X
  • [3] V. Shchukin, E. Schöll, P. Kratzer, in: Semiconductor Nanostructures, Ed. D. Bimberg, Springer, Berlin 2008, doi: 10.1007/978-3-540-77899-8
  • [4] T.W. Schlereth, C. Schneider, S. Höfling, A. Forchel, Nanotechnology 19, 045601 (2008), doi: 10.1088/0957-4484/19/04/045601
  • [5] Ł. Dusanowski, A. Golnik, M. Syperek, M. Nawrocki, G. Sek, J. Misiewicz, T.W. Schlereth, C. Schneider, S. Höfling, M. Kamp, A. Forchel, Appl. Phys. Lett. 101, 103108 (2012), doi: 10.1063/1.4750241
  • [6] D. Valente, J. Suffczyński, T. Jakubczyk, A. Dousse, A. Lemaître, I. Sagnes, L. Lanco, P. Voisin, A. Auffeves, P. Senellart, Phys. Rev. B 89, 041302(R) (2014), doi: 10.1103/PhysRevB.89.041302
  • [7] Ch. Hayn, Phys. Rev. B 64, 165306 (2001), doi: 10.1103/PhysRevB.64.165306
  • [8] V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov, Phys. Rev. B 68, 075409 (2003), doi: 10.1103/PhysRevB.68.075409
  • [9] P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Phys. Rep. 324, 271 (2000), doi: 10.1016/S0370-1573(99)00046-0
  • [10] I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), doi: 10.1063/1.1368156
  • [11] K.P. Korona, P. Wojnar, J.A. Gaj, G. Karczewski, J. Kossut, J. Kuhl, Solid State Commun. 133, 369 (2005), doi: 10.1016/j.ssc.2004.11.032
  • [12] L. Besombes, K. Kheng, L. Marsal, H. Mariette, Phys. Rev. B 63, 155307 (2001), doi: 10.1103/PhysRevB.63.155307
  • [13] S. Rudin, T.L. Reinecke, M. Bayer, Phys. Rev. B 74, 161305 (2006), doi: 10.1103/PhysRevB.74.161305
  • [14] A. Babiński, J. Borysiuk, S. Kret, M. Czyż, A. Golnik, S. Raymond, Z.R. Wasilewski, Appl. Phys. Lett. 92, 171104 (2008), doi: 10.1063/1.2918836
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.