Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 5 | 1183-1186

Article title

Quantum Hall State ν = 1/3 and Antilexicographic Order of Partitions

Content

Title variants

Languages of publication

EN

Abstracts

EN
We focus on a certain aspect of trial wave function approach in the fractional quantum Hall effect. We analyze the role of partition orderings and discuss the possible numerical search for the partition determining the subspace of the Hilbert space containing a particular quantum Hall wave function. This research is inspired by analogical properties of certain polynomials which are the object of interest of the symmetric function theory, especially the Jack polynomials (related to the so-called "Jack states"). Presented method may be used in the search of candidate trial wave functions. We also justify (in certain cases) diagonalization of the Coulomb repulsion Hamiltonian restricted to certain subspaces. We focus on the states at filling factor ν=1/3 in the lowest and second Landau level.

Keywords

EN

Contributors

author
  • Department of Theoretical Physics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
author
  • Department of Theoretical Physics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

References

  • [1] J.K. Jain, Composite Fermions, Pennsylvania State University, 2012, doi: 10.1007/3-540-48863-4
  • [2] J.K. Jain, Phys. Rev. Lett. 63, 199 (1989), doi: 10.1103/PhysRevLett.63.199
  • [3] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), doi: 10.1103/PhysRevLett.50.1395
  • [4] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982), doi: 10.1103/PhysRevLett.48.1559
  • [5] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York 1995
  • [6] I.G. Macdonald, A New Class of Symmetric Functions, Publ. I.R.M.A. Strasbourg, 372/S20, Actes 20 Séminaire Lotharingien, 1988, p. 131
  • [7] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, American Mathematical Society, United States of America, 2003
  • [8] R.P. Stanley, Adv. Math. 77, 76 (1988), doi: 10.1016/0001-8708(89)90015-7
  • [9] F.K. Sogo, J. Math. Phys. 35, 2282 (1994), doi: 10.1063/1.530552
  • [10] A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag, Berlin 2007, doi: 10.1007/3-540-48863-4
  • [11] L. Lapointe, A. Lascoux, J. Morse, Elec. J. Combin. 7, N1 (2000) http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1n1
  • [12] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991), doi: 10.1016/0550-3213(91)90407-O
  • [13] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999), doi: 10.1103/PhysRevB.59.8084
  • [14] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. B 77, 184502 (2008), doi: 10.1103/PhysRevB.77.184502
  • [15] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008), doi: 10.1103/PhysRevLett.100.246802
  • [16] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 102, 066802 (2009), doi: 10.1103/PhysRevLett.102.066802
  • [17] A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009), doi: 10.1103/PhysRevLett.103.206801
  • [18] R. Thomale, B. Estienne, N. Regnault, A. Bernevig, Phys. Rev. B 84, 045127 (2011), doi: 10.1103/PhysRevB.84.045127
  • [19] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011), doi: 10.1016/j.nuclphysb.2010.09.018
  • [20] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 126, 1134 (2014), doi: 10.12693/APhysPolA.126.1134
  • [21] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 129, A-73 (2016), doi: 10.12693/APhysPolA.129.A-73
  • [22] K.H. Lee, Z.-X. Hu, X. Wan, Phys. Rev. B 89, 165124 (2014), doi: 10.1103/PhysRevB.89.165124
  • [23] M.V. Milovanovic, Th. Jolicoeur, I. Vidanovic, Phys. Rev. B 80, 155324 (2009), doi: 10.1103/PhysRevB.80.155324
  • [24] D.E. Littlewood, Proc. Lond. Math. Soc. 43, 485 (1961), doi: 10.1112/plms/s3-11.1.485

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n506kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.