Title variants
Languages of publication
Abstracts
We focus on a certain aspect of trial wave function approach in the fractional quantum Hall effect. We analyze the role of partition orderings and discuss the possible numerical search for the partition determining the subspace of the Hilbert space containing a particular quantum Hall wave function. This research is inspired by analogical properties of certain polynomials which are the object of interest of the symmetric function theory, especially the Jack polynomials (related to the so-called "Jack states"). Presented method may be used in the search of candidate trial wave functions. We also justify (in certain cases) diagonalization of the Coulomb repulsion Hamiltonian restricted to certain subspaces. We focus on the states at filling factor ν=1/3 in the lowest and second Landau level.
Discipline
Journal
Year
Volume
Issue
Pages
1183-1186
Physical description
Dates
published
2016-11
Contributors
author
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
author
- Department of Theoretical Physics, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
References
- [1] J.K. Jain, Composite Fermions, Pennsylvania State University, 2012, doi: 10.1007/3-540-48863-4
- [2] J.K. Jain, Phys. Rev. Lett. 63, 199 (1989), doi: 10.1103/PhysRevLett.63.199
- [3] R. Laughlin, Phys. Rev. Lett. 50, 1395 (1983), doi: 10.1103/PhysRevLett.50.1395
- [4] D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982), doi: 10.1103/PhysRevLett.48.1559
- [5] I.G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford University Press, New York 1995
- [6] I.G. Macdonald, A New Class of Symmetric Functions, Publ. I.R.M.A. Strasbourg, 372/S20, Actes 20 Séminaire Lotharingien, 1988, p. 131
- [7] S. Kerov, Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, American Mathematical Society, United States of America, 2003
- [8] R.P. Stanley, Adv. Math. 77, 76 (1988), doi: 10.1016/0001-8708(89)90015-7
- [9] F.K. Sogo, J. Math. Phys. 35, 2282 (1994), doi: 10.1063/1.530552
- [10] A. Hora, N. Obata, Quantum Probability and Spectral Analysis of Graphs, Springer-Verlag, Berlin 2007, doi: 10.1007/3-540-48863-4
- [11] L. Lapointe, A. Lascoux, J. Morse, Elec. J. Combin. 7, N1 (2000) http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1n1
- [12] G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991), doi: 10.1016/0550-3213(91)90407-O
- [13] N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999), doi: 10.1103/PhysRevB.59.8084
- [14] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. B 77, 184502 (2008), doi: 10.1103/PhysRevB.77.184502
- [15] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 100, 246802 (2008), doi: 10.1103/PhysRevLett.100.246802
- [16] B.A. Bernevig, F.D.M. Haldane, Phys. Rev. Lett. 102, 066802 (2009), doi: 10.1103/PhysRevLett.102.066802
- [17] A. Bernevig, N. Regnault, Phys. Rev. Lett. 103, 206801 (2009), doi: 10.1103/PhysRevLett.103.206801
- [18] R. Thomale, B. Estienne, N. Regnault, A. Bernevig, Phys. Rev. B 84, 045127 (2011), doi: 10.1103/PhysRevB.84.045127
- [19] W. Baratta, P.J. Forrester, Nucl. Phys. B 843, 362 (2011), doi: 10.1016/j.nuclphysb.2010.09.018
- [20] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 126, 1134 (2014), doi: 10.12693/APhysPolA.126.1134
- [21] B. Kuśmierz, Y.-H. Wu, A. Wójs, Acta Phys. Pol. A 129, A-73 (2016), doi: 10.12693/APhysPolA.129.A-73
- [22] K.H. Lee, Z.-X. Hu, X. Wan, Phys. Rev. B 89, 165124 (2014), doi: 10.1103/PhysRevB.89.165124
- [23] M.V. Milovanovic, Th. Jolicoeur, I. Vidanovic, Phys. Rev. B 80, 155324 (2009), doi: 10.1103/PhysRevB.80.155324
- [24] D.E. Littlewood, Proc. Lond. Math. Soc. 43, 485 (1961), doi: 10.1112/plms/s3-11.1.485
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n506kz