Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 5 | 1179-1182

Article title

Landau Levels of Double-Weyl Nodes in a Simple Lattice Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
In the Weyl semimetals, a recently discovered class of bulk materials, inverted band gap closes in the first Brillouin zone at topologically protected points of degeneracy called the Weyl nodes. By using the Chern number formalism it is possible to assign to each of the nodes an integer topological charge Q. While around typical Weyl points the energy disperses linearly in all three directions, double-Weyl nodes (with |Q|=2) exhibit quadratic dispersion in two directions and linear in the third one. We use a simple 2-band tight-binding lattice model to investigate the dispersion of the Landau levels in the presence of quantizing magnetic field in the vicinity of a double-Weyl node. In the long wavelength limit we obtain analytically the expected presence of two chiral levels. In addition, we find numerous level crossings between the non-chiral Landau levels and the chiral ones, a feature which is distinct from the single node case. Calculations for a finite-size sample, both with periodic and hard-wall boundary conditions (the latter corresponding to slab geometry), show that the two chiral levels hybridize in the conduction band with the two lowest non-chiral Landau levels. In the case of slab geometry these four levels are responsible for the formation of a protected surface state.

Keywords

EN

Year

Volume

130

Issue

5

Pages

1179-1182

Physical description

Dates

published
2016-11

Contributors

  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-094 Warszawa, Poland
  • Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
author
  • Faculty of Physics, University of Warsaw, L. Pasteura 5, 02-094 Warszawa, Poland

References

  • [1] H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983), doi: 10.1016/0370-2693(83)91529-0
  • [2] A.A. Zyuzin, A.A. Burkov, Phys. Rev. B 86, 115133 (2012), doi: 10.1103/PhysRevB.86.115133
  • [3] S. Zhong, J.E. Moore, I. Souza, Phys. Rev. Lett. 116, 077201 (2016), doi: 10.1103/PhysRevLett.116.077201
  • [4] P. Baireuther, J.A. Hutasoit, J. Tworzydło, C.W.J. Beenakker, New J. Phys. 18, 045009 (2016), doi: 10.1088/1367-2630/18/4/045009
  • [5] C. Fang, M. Gilbert, X. Dai, B.A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012), doi: 10.1103/PhysRevLett.108.266802
  • [6] G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011), doi: 10.1103/PhysRevLett.107.186806
  • [7] S.-M. Huang, S.Y. Xu, I. Belopolski, C.C. Lee, G. Chang, B. Wang, N. Alidoust, M. Neupane, H. Zheng, D. Sanchez, A. Bansil, G. Bian, H. Lin, M.Z. Hasan, Proc. Natl. Acad. Sci. USA 113, 1180 (2016), doi: 10.1073/pnas.1514581113

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n505kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.