Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 1141-1143
Article title

Structural and Electrical Properties of Electrodeposited Single Junction of Cuprous (I) Oxide-Copper

Title variants
Languages of publication
Cuprous (I) oxide (Cu₂O)-based solar cells were fabricated with the use of the electrodeposition technique at nanometre-scale, and the structural, morphological and electrical properties were investigated. The Cu₂O layers were electrodeposited on crystalline and polycrystalline copper substrates. To complete the Cu₂O/Cu(100) and Cu₂O/Cu interfaces as the solar cells the top electrodes of silver paste were painted on the rear of Cu₂O. The microscopic analysis exhibits uneven surface morphologies of a Cu₂O film with the roughness of 92.5 nm, while the X-ray diffraction analysis reveals that the layers are Cu₂O-type polycrystalline structures with the thickness of 493 nm and the crystallite size of 69.8(6) nm. The theoretical analysis of the current-voltage curve was provided to determine the values of electrical parameters of the most efficient solar cell of Ag/Cu₂O/Cu(100) and clearly indicate presence of two Schottky barriers at interfaces.
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • [1] O. Breitenstein, Opto-Electron. Rev. 21, 259 (2013), doi: 10.2478/s11772-013-0095-5
  • [2] K. Fujimoto, T. Oku, T. Akiyama, A. Suzuki, J. Phys. Conf. Series 433, 012024 (2013), doi: 10.1088/1742-6596/352/1/012022
  • [3] S. Noda, H. Shima, H. Akinaga, J. Phys. Conf. Series 433, 012027 (2013), doi: 10.1088/1742-6596/433/1/012027
  • [4] J.J. Loferski, J. Appl. Phys. 27, 777 (1956), doi: 10.1063/1.1722483
  • [5] E. Rówiński, Appl. Surf. Sci. 255, 5881 (2009)., doi: 10.1016/j.apsusc.2009.01.025
  • [6] Y.K. Lee, H. Lee, J.Y. Park, Sci. Rep. 4, 4580 (2014), doi: 10.1038/srep04580
  • [7] L.C. Olsen, F.W. Addis, W. Miller, Solar Cells 7, 247 (1982), doi: 10.1016/0379-6787(82)90050-3
  • [8] Y. An, A. Behnam, E.A. Pop, Appl. Phys. Lett. 102, 013110 (2013), doi: 10.1063/1.4773992
  • [9] J.A. Assimos, D. Trivich, J. Appl. Phys. 44, 1687 (1973), doi: 10.1063/1.1662432
  • [10] A. Goetzberger, W. Greubel, Appl. Phys. 14, 123 (1977), doi: 10.1007/BF00883080
  • [11] Y.P. Rakovich, J.F. Donegan, M.I. Vasilevskiy, A.L. Rogach, Phys. Status Solidi A 206, 2497 (2009), doi: 10.1002/pssa.200880486
  • [12] R.T. Tung, Mater. Sci. Eng. R 35, 1 (2001), doi: 10.1016/S0927-796X(01)00037-7
  • [13] M. Sieberer, J. Redinger, P. Mohn, Phys. Rev. B 75, 035203 (2007), doi: 10.1103/PhysRevB.75.035203
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.