Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 1127-1130
Article title

Nanoscale Deformation of GaAs Affected by Silicon Doping

Title variants
Languages of publication
Effect of silicon doping on the elastic-plastic transition of GaAs crystal is demonstrated by results of nanoindentations and ab initio simulations. The performed experiments show that an increase of silicon concentration causes a decrease of the contact pressure at the onset of permanent nanodeformation of GaAs crystal. Ab initio calculations demonstrate that presence of Si atoms in the crystal lattice suppresses the shear modulus as well as the pressure of equilibrium between zinc-blende and rock-salt phases of GaAs. Furthermore, it is argued that the effect of dislocations pinning to Si dopants is essential for clarification of GaAs yielding.
Physical description
  • Nordic Hysitron Laboratory, Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, 00076 Aalto, Finland
  • Nordic Hysitron Laboratory, Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, 00076 Aalto, Finland
  • Institute of Materials Science, Faculty of Computer Science and Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
  • [1] J. Li, K.J. Van Vliet, T. Zhu, S. Yip, S. Suresh, Nature 418, 307 (2002), doi: 10.1038/nature00865
  • [2] M. Fujikane, T. Yokogawa, S. Nagao, R. Nowak, Appl. Phys. Lett. 101, 201901 (2012), doi: 10.1063/1.4767372
  • [3] I. Szlufarska, A. Nakano, P. Vashishta, Science 309, 911 (2005), doi: 10.1126/science.1114411
  • [4] J.E. Bradby, J.S. Williams, M.V. Swain, Phys. Rev. B 67, 085205 (2003), doi: 10.1103/PhysRevB.67.085205
  • [5] D. Chrobak, K. Nordlund, R. Nowak, Phys. Rev. Lett. 98, 045502 (2007), doi: 10.1103/PhysRevLett.98.045502
  • [6] R. Nowak, D. Chrobak, S. Nagao, D. Vodnick, M. Berg, A. Tukiainen, M. Pessa, Nature Nanotechnol. 4, 287 (2009), doi: 10.1038/nnano.2009.49
  • [7] J.S. Blakemore, J. Appl. Phys. 53, R123 (1982), doi: 10.1063/1.331665
  • [8] E.D. Bourret, M.G. Tabache, A.G. Elliot, Appl. Phys. Lett. 50, 1373 (1987), doi: 10.1063/1.97860
  • [9] I. Yonenaga, K. Sumino, J. Appl. Phys. 62, 1212 (1987), doi: 10.1063/1.339672
  • [10] D. Chrobak, K.-H. Kim, K.J. Kurzydlowski, R. Nowak, Appl. Phys. Lett. 103, 072101 (2013), doi: 10.1063/1.4818260
  • [11] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009), doi: 10.1088/0953-8984/21/39/395502
  • [12] J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981), doi: 10.1103/PhysRevB.23.5048
  • [13] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [14] S.B. Zhang, M.L. Cohen, Phys. Rev. B 39, 1450 (1989), doi: 10.1103/PhysRevB.39.1450
  • [15] A. Mujica, A. Rubio, A. Munoz, R.J. Needs, Rev. Mod. Phys. 75, 863 (2003), doi: 10.1103/RevModPhys.75.863
  • [16] J.P. Hirth, J. Lothe, Theory of Dislocations, McGraw-Hill, New York 1968
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.