Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The integrity of turbine blades is essential for the safe operation of jet engines. Thus, the mechanical properties, especially creep resistance and fatigue strength at high temperatures, must be thoroughly optimized. In particular, it has previously been observed that the mechanical properties of blades depend on the microstructure and porosity resulting from the casting process. To decrease the internal porosity generated by investment casting, hot isostatic pressing can be applied. This paper aims to evaluate the effects of hot isostatic pressing on the microstructure of IN713C alloy blades. Two variants of hot isostatic pressing treatment, differing in pressure, were carried out, and each resulted in lowered porosity. Microstructural investigations, performed using scanning electron microscopy and electron backscatter diffraction revealed significant changes of γ' particles and high strain intensity in the surface layer of the blades after hot isostatic pressing treatment.
Discipline
- 81.40.Vw: Pressure treatment(see also 62.50.-p High-pressure effects in solids and liquids; 61.50.Ks Crystallographic aspects of phase transformations; pressure effects; for pressure effects on superconducting transition temperature, see 74.62.Fj)
- 61.05.jd: Theories of electron diffraction and scattering
- 61.66.Dk: Alloys
- 07.20.Pe: Heat engines; heat pumps; heat pipes
Journal
Year
Volume
Issue
Pages
1097-1099
Physical description
Dates
published
2016-10
Contributors
author
- Institute of Materials Science, Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Katowice, Poland
author
- Institute of Materials Science, Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Katowice, Poland
author
- Institute of Materials Science, Faculty of Materials Engineering and Metallurgy, Silesian University of Technology, Katowice, Poland
References
- [1] R.C. Reed, Superalloys. Fundamentals and Applications, Cambridge University Press, Cambridge 2006, doi: 10.1017/CBO9780511541285
- [2] M. Durand-Charre, The Microstructure of Superalloys, Gordon and Breach Sci. Publ., Amsterdam 1997
- [3] Superalloys. A technical guide, Eds. M.J. Donachie, S.J. Donachie, ASM International, Materials Park (OH) 2002
- [4] Modelling for Casting and Solidification Processing, Ed. Yu Kuang-O (Oscar), Marcel Dekker, New York 2002
- [5] L. Kunz, P. Lukáš, R. Konečná, S. Fintová, Int. J. Fatigue 41, 47 (2012), doi: 10.1016/j.ijfatigue.2011.12.002
- [6] S.-H. Chang, J. Alloys Comp. 486, 716 (2009), doi: 10.1016/j.jallcom.2009.07.046
- [7] K.-O. Lee, S.-B. Lee, Mater. Sci. Eng. A 541, 81 (2012), doi: 10.1016/j.msea.2012.02.005
- [8] Y. Zhou, S. Rao, Z. Zhang, Z. Zhao,Mater. Des. 49, 25 (2013), doi: 10.1016/j.matdes.2013.01.055
- [9] S. Roskosz, M. Staszewski, J. Cwajna, Mater. Charact. 56, 406 (2006), doi: 10.1016/j.matchar.2005.11.005
- [10] S. Roskosz, J. Adamiec, Mater. Charact. 60, 1120 (2009), doi: 10.1016/j.matchar.2009.01.024
- [11] S. Roskosz, Comprehensive Evaluation of Porosity of Precision Castings Made of High-Temperature Creep Resisting Nickel Superalloys, Silesian University of Technology Publ. Co., Gliwice 2011 (in Polish)
- [12] S. Zlá, B. Smetana, M. Žaludová, J. Dobrovská, V. Vodárek, K. Konečná, V. Matějká, H. Francová, J. Thermal Anal. Cal. 110, 211 (2012), doi: 10.1007/s10973-012-2304-8
- [13] H. Takagi, M. Fujiwara, K. Kakehi, Mater. Sci. Eng. A 387, 348 (2004), doi: 10.1016/j.msea.2004.01.061
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n482kz