PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 1033-1036
Article title

Influence of High Energy Milling Time on the Ti-50Ta Biomedical Alloy Structure

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nickel-free titanium alloys are a promising research direction in the field of biomedical materials. Current literature reports indicate that there is a possibility of using the Ti-Ta alloys in medicine since these alloys have had satisfactory results as far as biocompatibility, resistance to corrosion and mechanical properties are concerned, which is an important aspect while considering the use of this alloy for long-lasting bone implants. This article presents the results of a high-energy milling process with the use of Ti and Ta powders. The ball-milling process was carried out for various times, including 20, 40, 60, 80, and 100 h. The samples were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The research confirmed partial synthesis of the materials during the process of high energy ball milling.
Keywords
Year
Volume
130
Issue
4
Pages
1033-1036
Physical description
Dates
published
2016-10
References
  • [1] G. He, M. Hagiwara, Mater. Sci. Eng. C 26, 14 (2006), doi: 10.1016/j.jmbbm.2012.11.014
  • [2] M. Sowa, A. Kazek-Kęsik, R.P. Socha, G. Dercz, J. Michalska, W. Simka, Electrochim. Acta 114, 627 (2013), doi: 10.1016/j.electacta.2013.10.047
  • [3] A. Biesiekierski, J. Wang, M.A.-H. Gepreel, C. Wen, Acta Biomater. 8, 1661 (2012), doi: 10.1016/j.actbio.2012.01.018
  • [4] P.J.S. Buenconsejo, H.Y. Kim, H. Hosoda, S. Miyazaki, Acta Mater. 57, 1068 (2009), doi: 10.1016/j.actamat.2008.10.041
  • [5] D. Mareci, R. Chelariu, D.-M. Gordin, G. Ungureanu, T. Gloriant, Acta Biomater. 5, 3625 (2009), doi: 10.1016/j.actbio.2009.05.037
  • [6] Y.-L. Zhou, M. Niinomi, Mater. Sci. Eng. C 29, 1061 (2009), doi: 10.1016/j.msec.2008.09.012
  • [7] Y.-L. Zhou, M. Niinomi, J. Alloys Comp. 466, 535 (2008), doi: 10.1016/j.jallcom.2007.11.090
  • [8] Y.-L. Zhou, M. Niinomi, T. Akahori, Mater. Sci. Eng. A 371, 283 (2004), doi: 10.1016/j.msea.2003.12.011
  • [9] Y. Liu, K. Li, H. Wu, M. Song, W. Wang, N. Li, H. Tang, J. Mech. Behav. Biomed. Mater. 51, 302 (2015), doi: 10.1016/j.jmbbm.2015.07.004
  • [10] H.M. Rietveld, J. Appl. Crystallogr. 3, 65 (1969), doi: 10.1107/S0021889869006558
  • [11] D.B. Wiles, R.A. Young, J. Appl. Cryst. 14, 149 (1981), doi: 10.1107/S0021889881008996
  • [12] The Rietveld Method, Ed. R.A. Young, Oxford Univ. Press, New York 1993, doi: 10.1002/crat.2170300412
  • [13] R.J. Hill, C.J. Howard, J Appl. Crystallogr. 20, 467 (1987), doi: 10.1107/S0021889887086199
  • [14] G. Dercz, D. Oleszak, K. Prusik, L. Pająk, Rev. Adv. Mater. Sci. 8, 764 (2008)
  • [15] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953), doi: 10.1016/0001-6160(53)90006-6
  • [16] L. Lü, M.O. Lai, Mechanical Alloying, Kluwer Academic, Boston 1998, doi: 10.1007/978-1-4615-5509-4
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n463kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.