Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The crystallography and microstructure of eutectic carbides crystallizing in non-equilibrium conditions in hypoeutectic Fe24Cr0.8C have been studied by light microscopy, scanning electron microscopy, and transmission electron microscopy. The alloy was synthesized in an arc furnace in high purity argon atmosphere and crystallized on water-cooled copper mould. Greater thermal gradient in regions close to water-cooled, copper mould in comparison with top of the ingot gives a formation of eutectic carbides with two morphologies: large polygonal carbides and surrounding them much smaller, plate-like carbides instead of rod-like carbides, observed in top of the ingot. There was no evidence for influence of non-equilibrium crystallization to the formation of types of carbides different than M₂₃C₆.
Discipline
- 81.20.-n: Methods of materials synthesis and materials processing(see also 61.72.U- Doping and impurity implantation; for crystal growth, see 81.10.-h; for film growth, deposition and epitaxy, see 81.15.-z)
- 81.30.Fb: Solidification
- 81.70.-q: Methods of materials testing and analysis(see also 82.80.-d Chemical analysis and related physical methods of analysis)
Journal
Year
Volume
Issue
Pages
1007-1009
Physical description
Dates
published
2016-10
Contributors
author
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
References
- [1] A. Wiengmoon, J.T.H. Pearce, T. Chairuangsri, Mater. Chem. Phys. 125, 739 (2011), doi: 10.1016/j.matchemphys.2010.09.064
- [2] Ö.N. Dogan, J.A. Hawk, Wear 189, 136 (1995), doi: 10.1016/0043-1648(95)06682-9
- [3] E. Fras, E. Guzik, H.F. Lopez, Metall. Trans. A 19, 1235 (1988), doi: 10.1007/BF02662584
- [4] J.J. Coronado, Wear 270, 823 (2011), doi: 10.1016/j.wear.2011.02.009
- [5] G.L.F. Powell, R.A. Carlson, V. Randle, J. Mater. Sci. 29, 4889 (1994), doi: 10.1007/BF00356539
- [6] A. Wiengmoon, Naresuan Univ. Eng. J. 6, 64 (2011)
- [7] A. Inoue, T. Masumoto, Metall. Trans. A 11, 739 (1980), doi: 10.1007/BF02661203
- [8] M. Venkatraman, J.P. Neumann, Bull. Alloy Phase Diagrams 11, 152 (1990), doi: 10.1007/BF02841701
- [9] A.V. Khvan, B. Hallstedt, C. Broeckmann, Calphad Comput. Coupling Phase Diagrams Thermochem. 46, 24 (2014), doi: 10.1016/j.calphad.2014.01.002
- [10] Ö.N. Doğan, J.A. Hawk, G. Laird, Metall. Mater. Trans. A 28, 1315 (1997), doi: 10.1007/s11661-997-0267-3
- [11] D.M. Kundrat, M. Chochol, J.F. Elliott, Metall. Trans. B 15, 663 (1984), doi: 10.1007/BF02657287
- [12] K. Wieczerzak, P. Bała, M. Stępień, G. Cios, T. Kozieł, Arch. Metall. Mater. 60, 769 (2015), doi: 10.1515/amm-2015-0206
- [13] C.M. Chang, Y.C. Chen, W. Wu, Tribol. Int. 43, 929 (2010), doi: 10.1016/j.triboint.2009.12.045
- [14] S. Imurai, C. Thanachayanont, J.T.H. Pearce, T. Chairuangsri, Arch. Metall. Mater. 60, 919 (2015), doi: 10.1515/amm-2015-0230
- [15] H.J. Goldschmidt, in: Interstitial Alloys, Springer Science + Business Media, LLC, New York 1967, p. 88
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n455kz