Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 993-995
Article title

Corrosion Rate of the X2CrNiMoN22-5-3 Duplex Stainless Steel Annealed at 500 cc

Title variants
Languages of publication
The X2CrNiMoN22-5-3 duplex stainless steel has an austenitic-ferritic microstructure with an average fraction of each phase of approximately 50%. At the duplex stainless steel the nitrogen serves to significantly improve the corrosion resistance of the alloy also in the welded condition. These steels present the excellent corrosion resistance of austenite steel, and the high mechanical behaviour of ferrite steel. However, the performance presented by duplex stainless steels can be drastically reduced by undesirable phases, such as sigma phase, chi phase, secondary austenite and a lot of chromium-rich and carbides precipitates. In this case an upper temperature limit of 300°C has been placed in the use of X2CrNiMoN22-5-3 steel in the industry mainly due to 475°C embrittlement. The purpose of this work was to ascertain how 60 min isothermal heat treatments at 500°C and corrosion time influence on the relative mass loss, profile roughness parameters and endothermal process by dynamic scanning calorimetry curves of heating measurement from 400 to 600°C of X2CrNiMoN22-5-3 duplex stainless steel. The influence of boiling nitric acid on the steel corrosion resistance was investigated using weight loss and profile roughness parameters.
  • University of Warmia and Mazury in Olsztyn, Faculty of Technical Sciences, St. Oczapowskiego 11, 10-957 Olsztyn, Poland
  • [1] A. Momeni, K. Dehghani, X.X. Zhang, J. Mater. Sci. 47, 2966 (2012), doi: 10.1007/s10853-011-6130-3
  • [2] J. Nowacki, A. Łukojć, Mater. Character. 56, 436 (2006), doi: 10.1016/j.matchar.2006.02.007
  • [3] P. Szabracki, T. Lipiński, in: Proc. 23rd Int. Conf. on Metallurgy and Materials, Metal 2014, TANGER Ltd., Ostrava 2014, p. 476
  • [4] A. Dudek, A. Wrońska, L. Adamczyk, J. Solid State Electrochem. 18, 2973 (2014), doi: 10.1007/s10008-014-2483-2
  • [5] P. Szabracki, T. Lipiński, Solid State Phenom. 203-204, 59 (2013), doi: 10.4028/
  • [6] S. Topolska, J.Łabanowski, J. Achiev. Mater. Manufact. Eng. 36, 142 (2009)
  • [7] J. Selejdak, R. Ulewicz, M. Ingaldi, as Ref. [3], p. 1882
  • [8] D.S. Petrovic, M. Pirnat, G. Klancnik, P. Mrvar, J. Medved, J. Therm. Anal. Calorim. 109, 1185 (2012), doi: 10.1007/s10973-012-2370-y
  • [9] J. Pietraszek, A. Gadek-Moszczak, Solid State Phenom. 197, 162 (2013), doi: 10.4028/
  • [10] M. Scendo, N. Radek, J. Trela, Int. J. Electrochem. Sci. 8, 9264 (2013)
  • [11] R. Ulewicz, Metallurgija 42, 61 (2003)
  • [12] S. Shi, G. Ma, B. Guo, K. Fang, J. Wang, J. Mater. Eng. Perf. 23, 2043 (2014), doi: 10.1007/s11665-014-0978-8
  • [13] W. Wołczyński, E. Guzik, W. Wajda, D. Jedrzejczyk, B. Kania, M. Kostrzewa, Archiv. Metall. Mater. 57, 105 (2012), doi: 10.2478/V10172-011-0159-9
  • [14] W. Pilarczyk, Cryst. Res. Technol. 50, 700 (2015), doi: 10.1002/crat.201400438
  • [15] R. Włodarczyk, A. Dudek, Z. Nitkiewicz, Archiv. Metall. Mater. 56, 181 (2011), doi: 10.2478/v10172-011-0021-0
  • [16] K.L. Weng, H.R. Chen, J.R. Yang, Mater. Sci. Eng. A 379, 119 (2004), doi: 10.1016/j.msea.2003.12.051
  • [17] V. Freitas, P.G. Normando, V. Albuquerque, E. de Macedo Silva, A. Silva, J.R.S. Tavares, J. Nondestruct. Eval. 30, 130 (2011), doi: 10.1007/s10921-011-0100-1
  • [18] S.S.M. Tavares, V.F. Terra, J. Mater. Sci. 40, 4025 (2005)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.