Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 920-922
Article title

Microstructure and Magnetic Properties of the Classical Amorphous Alloys: Fe₆₁Co₁₀Y₈Me₁B₂₀ (where Me = W, Mo)

Title variants
Languages of publication
A study has been conducted into the effects of substituting small quantities of alloying elements (tungsten and molybdenum) on the structure and magnetic properties of classical amorphous alloys that are based on the formula: Fe₆₁Co₁₀Y₈Me₁B₂₀. The structure of the resulting alloy samples was examined using X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy. Based on the results of these studies, it was found that the obtained alloys were amorphous. Images from the scanning electron microscope were typical for amorphous materials. Cross-sectional images were homogeneous and did not contain "vein- and scale-type" precipitations. Studies examining the magnetic properties of the samples were carried out using a vibrating sample magnetometer. It was found that the alloy featuring the addition of tungsten exhibited a significantly greater saturation of magnetization and a substantially lower coercivity. This resulted from the fact that the atomic radius of tungsten is much larger than that of molybdenum, resulting in increased difference between the atomic constituents of the alloy; This, in turn, improves the glass-forming ability.
Physical description
  • [1] M.E. McHenry, M.A. Willard, D.E. Laughlin, Prog. Mater. Sci. 44, 291 (1999), doi: 10.1016/S0079-6425(99)00002-X
  • [2] S. Lesz, R. Szewczyk, D. Szewieczek, A. Bieńkowski, J. Mater. Process. Tech. 157-158, 743 (2004), doi: 10.1016/j.jmatprotec.2004.07.133
  • [3] M.A. Willard, M. Daniil, in: Handbook of Magnetic Materials, Vol. 21, Ed. K.H.J. Buschow, North Holland, London 2013, p. 173, doi: 10.1016/B978-0-444-59593-5.00004-0
  • [4] S. Roth, M. Stoica, J. Degmova, U. Gaitzsch, J. Eckert, L. Schultz, J. Magn. Magn. Mater. 304, 192 (2006), doi: 10.1016/j.jmmm.2006.02.121
  • [5] Y.J. Yang, Q.J. Chen, S.S. Shan, H.W. Liu, L.M. Qiao, C.X. Liu, J. Alloys Comp. 480, 329 (2009), doi: 10.1016/j.jallcom.2009.02.012
  • [6] B.X. Gu, D.S. Xue, B.G. Shen, F.S. Li, J. Magn. Magn. Mater. 167, 105 (1997), doi: 10.1016/S0304-8853(96)00582-3
  • [7] D. Szewieczek, S. Lesz, J. Mater. Process. Tech. 162-163, 254 (2005), doi: 10.1016/j.jmatprotec.2005. 02.017
  • [8] L.F. Kiss, J. Balogh, L. Bujdosó, D. Kaptás, T. Kemény, A. Kovács, I. Vincze, J. Alloys Comp. 509, S188 (2011), doi: 10.1016/j.jallcom.2010.11.014
  • [9] P. Pietrusiewicz, K. Błoch, M. Nabiałek, S. Walters, Acta Phys. Pol. A 127, 397 (2015), doi: 10.12693/APhysPolA.127.397
  • [10] J. Han, C. Wang, Sh. Kou, X. Liu, Trans. Nonferr. Met. Soc. China 23, 148 (2013), doi: 10.1016/S1003-6326(13)62441-3
  • [11] M.G. Nabialek, M. Szota, M.J. Dospial, J. Alloys Comp. 526, 68 (2012), doi: 10.1016/j.jallcom.2012.02.106
  • [12] P. Pietrusiewicz, M. Nabiałek, M. Szota, K. Perduta,Arch. Metall. Mater. 57, 265 (2012), doi: 10.2478/v10172-012-0021-8
  • [13] M. Nabiałek, P. Pietrusiewicz, K. Błoch, J. Alloys Comp. 628, 424 (2015), doi: 10.1016/j.jallcom.2014.12.136
  • [14] Yong Ik Jang, Jongryoul Kim, Dong Hyuk Shin, Mater. Sci. Eng. B Solid 78, 113 (2000), doi: 10.1016/S0921-5107(00)00522-5
  • [15] I. Betancourt, S. Baez, J. Non-Cryst. Solids 355, 1202 (2009), doi: 10.1016/j.jnoncrysol.2009.05.013
  • [16] H. Kronmüller, J. Appl. Phys. 52, 1859 (1981), doi: 10.1063/1.329552
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.