PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 880-883
Article title

XRD and TEM Heating of Large Period Ni/Al Multilayer Coatings

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Ni/Al multilayer coating of λ ≈100 nm was deposited onto (001)-oriented monocrystalline silicon substrate using double target magnetron sputtering system equipped with rotating sample holder. The thicknesses of alternating layers were adjusted in the way to preserve the chemical composition ratio close to 50%Al:50%Ni (at.%). The in situ X-ray diffraction and in situ transmission electron microscopy heating experiments were carried out at relatively low heating rates (20°C/min) in order to study the phase transformation sequence. The investigations revealed that the reaction between Ni and Al multilayers starts at ≈200°C with precipitation of Al₃Ni phase, while above 300°C dominates precipitation of Ni₃Al and NiAl intermetallic phases. Both the X-ray and electron diffractions acquired at 450°C confirmed presence of the Ni₃Al and NiAl intermetallics, but the former pointed at still lasting traces of Ni(Al) solid solution.
Keywords
EN
Year
Volume
130
Issue
4
Pages
880-883
Physical description
Dates
published
2016-10
References
  • [1] A.S. Edelstein, R.K. Everett, G.Y. Richardson, S.B. Qadri, E.I. Altman, J.C. Folley, J.H. Perepezko, J. Appl. Phys. 76, 7850 (1994), doi: 10.1063/1.357893
  • [2] K.J. Blobaum, D. Van Heerden, A.J. Gavens, T.P. Weihs, Acta Mater. 51, 3871 (2003), doi: 10.1016/S1359-6454(03)00211-8
  • [3] J. Noro, A.S. Ramos, M.T. Vieira, Intermetallics 16, 1061 (2008), doi: 10.1016/j.intermet.2008.06.002
  • [4] A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, T.P. Weihs, J. Appl. Phys. 87, 1255 (2000), doi: 10.1063/1.372005
  • [5] A.S. Ramos, M.T. Vieira, J. Morgiel, J. Grzonka, S. Simőes, M.F. Vieira, J. Alloys Comp. 484, 335 (2009), doi: 10.1016/j.jallcom.2009.04.098
  • [6] S. Simőes, F. Viana, A.S. Ramos, M.T. Vieira, M.F. Vieira, Intermetallics 19, 350 (2011), doi: 10.1016/j.intermet.2010.10.021
  • [7] C. Michaelsen, K. Barmak, T.P. Weihs, J. Phys. D Appl. Phys. 30, 3167 (1997), doi: 10.1088/0022-3727/30/23/001
  • [8] J. Morgiel, M. Szlezynger, M. Pomorska, Ł. Maj, K. Marszałek, R. Mania, Int. J. Mater. Res. 106, 703 (2015), doi: 10.3139/146.111219
  • [9] K. Marszałek, J. Stępień, R. Mania, Int. J. Electron. Telecom. 60, 291 (2014), doi: 10.2478/eletel-2014-0038
  • [10] A. LeBail, H. Duroy, J.L. Fourquet, Mater. Res. Bull. 23, 447 (1988), doi: 10.1016/0025-5408(88)90019-0
  • [11] J. Rodriguez-Carvajal, Physica B 192, 55 (1993), doi: 10.1016/0921-4526(93)90108-I
  • [12] A. Boultif, D. Louer, J. Appl. Crystallogr. 37, 724 (2004), doi: 10.1107/S0021889804014876
  • [13] J.L. Lábár, Ultramicroscopy 103, 237 (2005), doi: 10.1016/j.ultramic.2004.12.004
  • [14] Joint Committee on Powder Diffraction Standards, JCPDS, in: International Centre for Diffraction Data. Powder Diffraction File-PDF-4, ICDD, (CDROM), Pennsylvania 2009
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n417kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.