Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 852-855

Article title

Effect of High Energy Ball Milling on the Structure and Phase Decomposition of the Multiferroic Bi₅Ti₃FeO₁₅ Ceramics

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents the results of the Bi₅Ti₃FeO₁₅ multiferroic phase stability analysis during high-energy ball milling aimed at obtaining fine dispersion ceramic powder. The X-ray diffraction and transmission electron microscopy methods were used to analyse the structure and verify the degree of crystallite dispersion. Structural data analysis was carried out using the Rietveld method. To carry out the analysis of the morphology, the scanning electron microscopy was used. The results that were obtained showed that the high energy ball milling process results in the decomposition of the initial ceramics, where finally Bi₅Ti₃FeO₁₅ and Bi are obtained. An increase in the proportion of the amorphous phase and an increase in the dispersion of the grains and crystallites of the powder that occurs with an increase in the milling time were observed.

Keywords

Contributors

author
  • Institute of Technology and Mechatronics, University of Silesia, Żytnia 12, 41-200 Sosnowiec, Poland
author
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
author
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
author
  • Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland

References

  • [1] A. Lawver, Smart Mater. Bull. 8, 5 (2001), doi: 10.1016/S1471-3918(01)80182-9
  • [2] A.P. Douvalis, M. Venkatesan, P. Velasco, C.B. Fitzgerald, J.M.D. Coey, J. Appl. Phys. 93, 8071 (2003), doi: 10.1063/1.1544452
  • [3] J. Dercz, J. Bartkowska, G. Dercz, P. Stoch, M. Łukasik, Int. J. Thermophys. 34, 567 (2013), doi: 10.1007/s10765-013-1424-0
  • [4] J. Bartkowska, J. Dercz, J. Exp. Theor. Phys. 117, 875 (2013), doi: 10.1134/S1063776113120017
  • [5] A. Hill, A. Filippeti, J. Magn. Magn. Mater. 242, 976 (2002), doi: 10.1016/S0304-8853(01)01078-2
  • [6] Y. X. Liu, J.G. Wan, J.M. Lin, C.W. Nan, J. Appl. Phys. 94, 5118 (2003), doi: 10.1063/1.1613811
  • [7] J. Dercz, A. Starczewska, G. Dercz, Int. J. Thermophys. 32, 746 (2011), doi: 10.1007/s10765-011-0965-3
  • [8] M.M. Kumar, V.R. Palkar, K. Srinivas, S.V. Suryanarayana, Appl. Phys. Lett. 76, 2764 (2006), doi: 10.1063/1.126468
  • [9] X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. Liu, J. Appl. Phys. 103, 94 (2008), doi: 10.1063/1.2908219
  • [10] M. Kumar, K.L. Yadav, G.D. Varma, Mater. Lett. 62, 1159 (2008), doi: 10.1016/j.matlet.2007.07.075
  • [11] H. Schmid, Ferroelectrics 162, 317 (1994), doi: 10.1080/00150199408245120
  • [12] B. Aurivillius, Arkh. Khemi. 1, 499 (1949)
  • [13] B. Aurivillius, Arkh. Khemi. 2, 512 (1950)
  • [14] F. Kubel, H. Schmid, Ferroelectrics 129, 101 (1992)
  • [15] H.M. Rietveld, J. Appl. Crystallogr. 3, 65 (1969), doi: 10.1107/S0021889869006558
  • [16] R.A.Young, The Rietveld Method, Oxford Univ. Press, New York 1993, doi: 10.1002/crat.2170300412
  • [17] R.J. Hill, C.J. Howard, J. Appl. Crystallogr. 20, 467 (1987), doi: 10.1107/S0021889887086199

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n409kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.