Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 845-847

Article title

Fitting the Long-Range Order of a Decagonal Quasicrystal

Content

Title variants

Languages of publication

EN

Abstracts

EN
The generalized Penrose tiling is an infinite set of decagonal tilings. It is constructed with the same rhombs (thick and thin) as the conventional Penrose tiling, but its long-range order depends on the so-called shift parameter sın łangle 0,1). The formula for structure factor, calculated within the average unit cell approach, works in physical space only and is directly dependent on the s parameter. It allows to straightforwardly change the long-range order of the refined structure just by changing the s parameter and keeping the tile decoration unchanged. The possibility and viability of using the shift as one of the refinement parameters during structure refinement was tested for a numerically generated simple binary decagonal quasicrystal.

Keywords

EN

Year

Volume

130

Issue

4

Pages

845-847

Physical description

Dates

published
2016-10

Contributors

author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

References

  • [1] P.M. De Wolff, Acta Crystallogr. A 30, 777 (1974), doi: 10.1107/S0567739474010710
  • [2] T. Janssen, Acta Crystallogr. A 42, 261 (1986), doi: 10.1107/S0108767386099324
  • [3] J. Wolny, Acta Crystallogr. A 54, 1014 (1998), doi: 10.1107/S0108767398006965
  • [4] J. Wolny, B. Kozakowski, P. Repetowicz, J. Alloys Comp. 342, 198 (2002), doi: 10.1016/S0925-8388(02)00172-X
  • [5] A. Dabrowska, B. Kozakowski, J. Wolny, Acta Crystallogr. A 61, 350 (2005), doi: 10.1107/S0108767305009505
  • [6] B. Kozakowski, J. Wolny, Acta Crystallogr. A 66, 489 (2010), doi: 10.1107/S0108767310016272
  • [7] M. Baake, M. Schlottmann, P.D. Jarvis, J. Phys. A Math. Gen. 24, 4637 (1991), doi: 10.1088/0305-4470/24/19/025
  • [8] A. Pavlovitch, M. Kleman, J. Phys. A Math. Gen. 20, 687 (1987), doi: 10.1088/0305-4470/20/3/031
  • [9] K.N. Ishihara, A. Yamamoto, Acta Crystallogr. A 44, 508 (1988), doi: 10.1107/S0108767388002958
  • [10] M.V. Jaric, Phys. Rev. B 34, 4685 (1986), doi: 10.1103/PhysRevB.34.4685
  • [11] M. Chodyn, P. Kuczera, J. Wolny, Acta Crystallogr. A 71, 161 (2015), doi: 10.1107/S2053273314024917
  • [12] A. Yamamoto, Acta Crystallogr. A 52, 509 (1996), doi: 10.1107/S0108767396000967
  • [13] International Tables For Crystallography, Volume C, Mathematical, physical and chemical tables, Ed. E. Prince, 2006, doi: 10.1107/97809553602060000103
  • [14] P. Kuczera, J. Wolny, W. Steurer, Acta Crystallogr. B 68, 578 (2012), doi: 10.1107/S0108768112041134

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n407kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.