EN
The generalized Penrose tiling is an infinite set of decagonal tilings. It is constructed with the same rhombs (thick and thin) as the conventional Penrose tiling, but its long-range order depends on the so-called shift parameter sın łangle 0,1). The formula for structure factor, calculated within the average unit cell approach, works in physical space only and is directly dependent on the s parameter. It allows to straightforwardly change the long-range order of the refined structure just by changing the s parameter and keeping the tile decoration unchanged. The possibility and viability of using the shift as one of the refinement parameters during structure refinement was tested for a numerically generated simple binary decagonal quasicrystal.