PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 4 | 845-847
Article title

Fitting the Long-Range Order of a Decagonal Quasicrystal

Content
Title variants
Languages of publication
EN
Abstracts
EN
The generalized Penrose tiling is an infinite set of decagonal tilings. It is constructed with the same rhombs (thick and thin) as the conventional Penrose tiling, but its long-range order depends on the so-called shift parameter sın łangle 0,1). The formula for structure factor, calculated within the average unit cell approach, works in physical space only and is directly dependent on the s parameter. It allows to straightforwardly change the long-range order of the refined structure just by changing the s parameter and keeping the tile decoration unchanged. The possibility and viability of using the shift as one of the refinement parameters during structure refinement was tested for a numerically generated simple binary decagonal quasicrystal.
Keywords
EN
Publisher

Year
Volume
130
Issue
4
Pages
845-847
Physical description
Dates
published
2016-10
Contributors
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
author
  • Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland
References
  • [1] P.M. De Wolff, Acta Crystallogr. A 30, 777 (1974), doi: 10.1107/S0567739474010710
  • [2] T. Janssen, Acta Crystallogr. A 42, 261 (1986), doi: 10.1107/S0108767386099324
  • [3] J. Wolny, Acta Crystallogr. A 54, 1014 (1998), doi: 10.1107/S0108767398006965
  • [4] J. Wolny, B. Kozakowski, P. Repetowicz, J. Alloys Comp. 342, 198 (2002), doi: 10.1016/S0925-8388(02)00172-X
  • [5] A. Dabrowska, B. Kozakowski, J. Wolny, Acta Crystallogr. A 61, 350 (2005), doi: 10.1107/S0108767305009505
  • [6] B. Kozakowski, J. Wolny, Acta Crystallogr. A 66, 489 (2010), doi: 10.1107/S0108767310016272
  • [7] M. Baake, M. Schlottmann, P.D. Jarvis, J. Phys. A Math. Gen. 24, 4637 (1991), doi: 10.1088/0305-4470/24/19/025
  • [8] A. Pavlovitch, M. Kleman, J. Phys. A Math. Gen. 20, 687 (1987), doi: 10.1088/0305-4470/20/3/031
  • [9] K.N. Ishihara, A. Yamamoto, Acta Crystallogr. A 44, 508 (1988), doi: 10.1107/S0108767388002958
  • [10] M.V. Jaric, Phys. Rev. B 34, 4685 (1986), doi: 10.1103/PhysRevB.34.4685
  • [11] M. Chodyn, P. Kuczera, J. Wolny, Acta Crystallogr. A 71, 161 (2015), doi: 10.1107/S2053273314024917
  • [12] A. Yamamoto, Acta Crystallogr. A 52, 509 (1996), doi: 10.1107/S0108767396000967
  • [13] International Tables For Crystallography, Volume C, Mathematical, physical and chemical tables, Ed. E. Prince, 2006, doi: 10.1107/97809553602060000103
  • [14] P. Kuczera, J. Wolny, W. Steurer, Acta Crystallogr. B 68, 578 (2012), doi: 10.1107/S0108768112041134
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n407kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.