PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 805-810
Article title

Surface Morphology, Structural and Optical Properties of MgO Films Obtained by Spray Pyrolysis Technique

Content
Title variants
Languages of publication
EN
Abstracts
EN
X-ray diffraction, atomic force microscopy, field emission scanning electron microscopy, UV-visible photometry, and photoluminescence measurements were used to investigate the surface morphology and structural and optical properties of MgO films. Magnesium oxide films deposited by the spray pyrolysis technique were studied. The substrate temperature was varied from T_{s} = 643 K to 693 K. Magnesium chloride hexahydrate (MgCl₂·6H₂O), dissolved in deionized water, was used as the precursor solution. It was established that the single phase films crystallize into a cubic structure with very fine crystallite size (about 2 nm). The optical band gaps of the samples were varied from 3.64 eV to 3.70 eV. Also, the films have a high level of transmittance of 90%. Photoluminescence spectra show the emission peaks at approximately 412 nm (3.00 eV) and 524 nm (2.38 eV). The peak with the energy of 3.00 eV is ascribed to holes trapped in magnesium ion vacancies acting as acceptors (F⁺ center). The broad emission peak at 524 nm is related to the presence of defects (F¯ centers) associated with oxygen ion vacancies.
Keywords
EN
Year
Volume
130
Issue
3
Pages
805-810
Physical description
Dates
published
2016-09
received
2015-11-02
(unknown)
2016-07-15
Contributors
author
  • Sumy State University, 2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine
  • Department of Physics, Sogang University, Seoul 121-742, South Korea
author
  • Sumy State University, 2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine
author
  • Sumy State University, 2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine
author
  • Sumy State University, 2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine
author
  • Sumy State University, 2, Rymskogo-Korsakova Str., 40007 Sumy, Ukraine
author
  • Department of Physics, Sogang University, Seoul 121-742, South Korea
author
  • Department of Physics, Sogang University, Seoul 121-742, South Korea
References
  • [1] B.O. Satishchandra, Thin Films and Heterostructures for Oxide Electronics, Springer Science & Business Media, New York 2006
  • [2] M.M. Habeeb, M.H. Jaddaa, A.H.K. Elttayef, H.M. Ajeel, Int. J. Appl. Innovat. Eng. Manag. 3, 94 (2014), doi: 10.11648/.2014030601.23
  • [3] I.C. Ho, Y. Xu, J.D. Mackenzie, J. Sol-Gel Sci. Technol. 9, 295 (1997), doi: 10.1007/BF02437193
  • [4] G. Bergeret, in: Handbook of Heterogeneous Catalysis, Eds. G. Ertl, H. Knozinger, J. Weitkamp, Vol. 2, Wiley-VCH, Weinheim 1997
  • [5] Y.W. Choi, J. Kim, Thin Solid Films 460, 295 (2004), doi: 10.1016/j.tsf.2004.01.066
  • [6] T. Naoi, H. Lin, A. Hirota, E. Otani, K. Amemiya, J. Soc. Inform. Display 17, 2 (2009), doi: 10.1889/JSID17.2.113
  • [7] S. Yuasa, D.D. Djayaprawira, J. Phys. D Appl. Phys. 40, R337 (2007), doi: 10.1088/0022-3727/40/21/R01
  • [8] M.A. Farag, M. El-Okr, R.M. Mahani, G.M. Turky, H.H. Afify, Int. J. Adv. Eng. Technol. Comput. Sci. 1, 1 (2014)
  • [9] G. Grinblat, F. Bern, J. Barzola-Quiquia, M. Tirado, D. Comedi, P. Esquinazi, Appl. Phys. Lett. 104, 103113 (2014), doi: 10.1063/1.4868648
  • [10] F. Niu, B.H. Hoerman, B.W. Wessels, MRS Proc. 619, 149 (2000), doi: 10.1557/PROC-619-149
  • [11] J.M. Zeng, H. Wang, S.X. Shang, Z. Wang, M. Wang, J. Cryst. Growth 169, 474 (1996), doi: 10.1016/S0022-0248(96)00411-3
  • [12] S. Kaneko, T. Ito, M. Soga, Y. Motoizumi, M. Yasui, Y.Y. Hirabayashi, Jpn. J. Appl. Phys. 52, 01AN02 (2013), doi: 10.7567/JJAP.52.01AN02
  • [13] J.H. Boo, S.B. Lee, K.S. Yu, W. Koh, Y. Kim, Thin Solid Films 341, 63 (1999), doi: 10.1016/S0040-6090(98)01524-7
  • [14] J.G. Yoon, H.K. Kim, J. Korean Phys. Soc. 31, 613 (1997)
  • [15] A.V. Dyachenko, A.S. Opanasuyk, D.I. Kurbatov, S.B. Bolshanina, V.M. Kuznetsov, Proc. Int. Conf. on Nanomaterials: Applications and Properties, Sumy State University Publishing, Sumy, Vol. 3, 2014, p. 01PCSI05
  • [16] F. Niu, B.H. Hoerman, B.W. Wessels, MRS Proc. 619, 149 (2011), doi: 10.1557/PROC-619-149
  • [17] O.V. Diachenko, A.S. Opanasuyk, D.I. Kurbatov, V.M. Kuznetsov, H. Cheong, Funct. Mater. 22, 487 (2015), doi: 10.15407/fm22.04.487
  • [18] J.P. Singh, C.L. Chen, C.L. Dong, J. Prakash, D. Kabiraj, D. Kanjilal, K. Asokan, Superlatt. Microstruct. 77, 313 (2015), doi: 10.1016/j.spmi.2014.10.035
  • [19] J.P. Singh, I. Sulania, J. Prakash, S. Gautam, K.H. Chae, D. Kanjilal, K. Asokan, Adv. Mater. Lett. 3, 112 (2012), doi: 10.1016/j.spmi.2014.10.035
  • [20] A.M.E. Raj, V.B. Jothy, C. Ravidhas, T. Som, M. Jayachandran, C. Sanjeeviraja, Radiat. Phys. Chem. 78, 914 (2009), doi: 10.1016/j.radphyschem.2009.06.034
  • [21] X. Yi, W. Wenzhong, Q. Yitai, Y. Li, C. Zhiwen, Surf. Coat. Technol. 82, 291 (1996), doi: 10.1016/0257-8972(95)02762-9
  • [22] S. Nisatharaju, R. Ayyappa, D. Balamurugan, Asian J. Appl. Sci. 7, 780 (2014), doi: 10.3923/ajaps.2014.780.785
  • [23] D. Nečas, P. Klapetek, Open Phys. 10, 1322 (2012), doi: 10.2478/s11534-011-0096-2
  • [24] X-ray Diffraction, Ed. B.E. Warren, Dover, New York 1990
  • [25] Selected powder diffraction data for education straining, Search Manual and Data Cards, International Centre for Diffraction Data, USA 1997
  • [26] O. Yeheskel, R. Chaim, Z. Shen, M. Nygren, J. Mater. Res. 20, 719 (2005), doi: 10.1557/JMR.2005.0094
  • [27] S.G. Kim, J.Y. Kim, H.J. Kim, Thin Solid Films 376, 110 (2000), doi: 10.1016/S0040-6090(00)01186-X
  • [28] A.D. Pogrebnjak, A.P. Shypylenko, H. Amekura, Y. Takeda, A.S. Opanasyuk, D.I. Kurbatov, I.A. Kolotova, O.V. Klymov, C. Kozak, Acta Phys. Pol. A 123, 939 (2013), doi: 10.12693/APhysPolA.123.939
  • [29] D. Kurbatov, V. Kosyak, M. Kolesnyk, A. Opanasyuk, S. Danilchenko, Integrat. Ferroelectr. 103, 32 (2008), doi: 10.1080/10584580802558126
  • [30] C.J. Panchal, A.S. Opanasyuk, V.V. Kosyak, M.S. Desai, I.Y. Protsenko, J. Nano- Electron. Phys. 3, 274 (2011)
  • [31] A.S. Opanasyuk, D.I. Kurbatov, V.V. Kosyak, S.I. Kshniakina, S.N. Danilchenko, Crystallogr. Rep. 57, 927 (2012), doi: 10.1134/S1063774512070206
  • [32] S. Valanarasu, V. Dhanasekaran, M. Karunakaran, T.A. Vijayan, R. Chandramohan, T. Mahalingam, J. Mater. Sci. Mater. Electron. 25, 3846 (2014), doi: 10.1007/s10854-014-2098-5
  • [33] X. Fu, G. Wu, S. Song, Z. Song, X. Duo, C. Lin, Appl. Surf. Sci. 148, 223 (1999), doi: 10.1016/S0169-4332(99)00126-9
  • [34] J.W. Chen, D.C. Perng, J.F. Fang, Solar En. Mater. Solar Cells 95, 2471 (2011), doi: 10.1016/j.solmat.2011.04.034
  • [35] H. Kidowaki, T. Oku, T. Akiyama, A. Suzuki, B. Jeyadevan, J. Cuya, J. Mater. Sci. Res. 1, 138 (2012), doi: 10.5539/jmsr.v1n1p138
  • [36] N.M.A. Hadia, H.A.H. Mohamed, Mater. Sci. Semicond. Process. 29, 238 (2015), doi: 10.1016/j.mssp.2014.03.049
  • [37] P.B. Devaraja, D.N. Avadhani, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 118, 847 (2014), doi: 10.1016/j.saa.2013.08.050
  • [38] K.R. Nemade, S.A. Waghuley, Int. J. Met. 2014, 1 (2014), doi: 10.1155/2014/389416
  • [39] P. Edel, J. Phys. C Solid State Phys. 15, 1596 (1982), doi: 10.1088/0022-3719/15/7/022
  • [40] M. Li, X. Wang, H. Li, H. Di, X. Wu, C. Fang, B. Yang, Appl. Surf. Sci. 274, 188 (2013), doi: 10.1016/j.apsusc.2013.03.013
  • [41] C. Martinez-Boubeta, A. Martínez, S. Hernández, P. Pellegrino, A. Antony, J. Bertomeu, B. Martínez, Solid State Commun. 151, 751 (2011), doi: 10.1016/j.ssc.2011.03.007
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n325kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.