PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 778-784
Article title

Study on Thermodynamic Properties of Fe³⁺-Substituted Yttrium Iron Garnets

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents the molar heat capacity at constant volume C_{V} and characteristic Debye temperature θ, determination for the garnet system, Y_{3-x}Fe_{5+x}O_{12}, x=0.0, 0.1, 0.3, and 0.5 at 300 K. The θ values determined from Waldron's approach and those calculated using ultrasonic mean sound velocity, V_{mo}, are in agreement. C_{V} values calculated from the Einstein theory are consistent with the reported one and theoretically expected values using the Dulong-Petit law, but Waldron's approach based on the Debye theory and the Debye T³ law fail to estimate consistent C_{V} values. The result has been discussed in the light of key physical differences between the two theories. The applicability of the Kieffer model for molar heat capacity at constant pressure, C_{p}, determination has been tested. Finally, an attempt has been made to estimate electronic contribution and the temperature at which the lattice contribution and electronic contribution to the molar heat capacity become comparable.
Keywords
EN
Contributors
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Faculty of Science, M.S. University of Baroda, Vadodara 390 002, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • Department of Physics, Saurashtra University, Rajkot 360 005, India
author
  • M.N. College, Visnagar 384 315, India
References
  • [1] X.Y. Sun, Q. Du, T. Goto, M.C. Onbasli, D.H. Kim, N.M. Aimon, J. Hu, C.A. Ross, ACS Photon. 2, 856 (2015), doi: 10.1021/acsphotonics.5b00026
  • [2] H.S. Brault, L. Thibault, M. Legrain, P. Deniard, X. Rocquefelte, P. Leone, J.-L. Perillon, S. Le Bris, J. Waku, S. Jobic, Inorg. Chem. 53, 12378 (2014), doi: 10.1021/ic501708b
  • [3] P.U. Sharma, K.B. Modi, Phys. Scr. 83, 015601 (2010), doi: 10.1088/0031-8949/81/01/015601
  • [4] K.B. Modi, S.N. Dolia, P.U. Sharma, Ind. J. Phys. 89, 425 (2015), doi: 10.1007/s12648-014-0604-5
  • [5] K.B. Modi, P.U. Sharma, Phys. Scr. 88, 025702 (2013), doi: 10.1088/0031-8949/88/02/025702
  • [6] V.M. Denisov, L.T. Denisova, L.A. Irtyugo, G.S. Patrin, N.V. Volkov, L.G. Chumilina, Phys. Solid State 54, 2205 (2012), doi: 10.1134/S1063783412110078
  • [7] X. Guo, A.H. Tavakoli, S. Sutton, R.K. Kukkadapu, L. Qi, A. Lanzirotti, M. Newville, M. Asta, A. Navrotsky, Chem. Mater. 26, 1133 (2014), doi: 10.1021/cm403444f
  • [8] Y. Kanke, A. Navrotsky, J. Solid State Chem. 141, 424 (1998), doi: 10.1006/jssc.1998.7969
  • [9] X. Guo, Zs. Rak, A.H. Tavakoli, U. Becker, R.C. Ewing, A. Navrotsky, J. Mater. Chem. A 2, 16945 (2014), doi: 10.1039/c4ta03683b
  • [10] X. Guo, R.K. Kukkadapu, A. Lonzirotti, M. Newville, M.H. Engelhard, S.R. Sutton, A. Navrotsky, Inorg. Chem. 54, 4156 (2015), doi: 10.1021/acs.inorgchem.5b00444
  • [11] Cz. Jasiukiewicz, V. Karpus, Solid State Commun. 128, 167 (2003), doi: 10.1016/j.ssc.2003.08.008
  • [12] K.B. Modi, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, G.J. Baldha, P.K. Jha, Ind. J. Phys. 85, 411 (2011), doi: 10.1007/s12648-011-0051-5
  • [13] S. Klemme, J.C. van Miltenburg, P. Javorsky, F. Wastin, Am. Min. 90, 663 (2005), doi: 10.2138/am.2005.1812
  • [14] E. Dachs, C.A. Geiger, V.V. Seckendorff, M. Grodzicki, J. Chem. Thermodyn. 39, 906 (2007), doi: 10.1016/j.jct.2006.11.009
  • [15] K.T. Jacob, G. Rajitha, Solid State Ion. 224, 32 (2012), doi: 10.1016/j.ssi.2012.07.003
  • [16] K.B. Modi, P.Y. Raval, S.J. Shah, C.R. Kathad, S.V. Dulera, M.V. Popat, K.B. Zankat, K.G. Saija, T.K. Pathak, N.H. Vasoya, V.K. Lakhani, U. Chandra, P.K. Jha, Inorg. Chem. 54, 1543 (2015), doi: 10.1021/ic502497a
  • [17] http://www.charfac.umm.edu
  • [18] http://http://nanoanalysis.materials.ox.ac.uk
  • [19] R.D. Waldron, Phys. Rev. 99, 1727 (1955), doi: 10.1103/PhysRev.99.1727
  • [20] M. de Podesta, Understanding the Properties of Matter, 2nd ed., Taylor and Francis, London 2002
  • [21] S.S. Shinozaki, Phys. Rev. 122, 388 (1961), doi: 10.1103/PhysRev.122.388
  • [22] H. Kojitani, K. Nisgimura, A. Kubo, M. Sakashita, K. Aoki, M. Akaogi, Phys. Chem. Miner. 30, 409 (2003), doi: 10.1007/s00269-003-0332-4
  • [23] http://deltroniccrystalindustries.com
  • [24] S.L. Kakani, C. Hemrajani, A Text Book of Solid State Physics, 3rd ed., Chand, New Delhi 1997, p. 232
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n320kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.