Title variants
Languages of publication
Abstracts
In this paper, we have solved a quantum tunneling problem for 2-dimensional systems, including electron gas and graphene. In spite of the one-dimensional scattering problems, in two dimensions, we observe phenomenon of tunneling at energies above the barrier. This effect is an analogue to the total internal reflection in optics. The scattering amplitudes inside the barrier region exhibit decaying behavior corresponding to optical evanescent-wave coupling, not only in energies below barrier height, but also above barrier. Velocity-selecting transmission, corresponding to angle-resolved beam filtering effect is one of the achievements of the paper. The famous Hartman effect which occurs normally at sub-barrier energies and has previously been studied for graphene is also addressed. The results manifest occurrence of the Hartman effect for over-barrier energies, as well.
Discipline
- 72.10.Bg: General formulation of transport theory
- 73.23.Ad: Ballistic transport
- 72.80.Vp: Electronic transport in graphene
- 73.21.Fg: Quantum wells
- 73.40.Gk: Tunneling(for tunneling in quantum Hall effects, see 73.43.Jn)
- 73.23.-b: Electronic transport in mesoscopic systems
- 72.90.+y: Other topics in electronic transport in condensed matter (restricted to new topics in section 72)
- 72.10.-d: Theory of electronic transport; scattering mechanisms
Journal
Year
Volume
Issue
Pages
769-772
Physical description
Dates
published
2016-09
received
2016-01-24
(unknown)
2016-06-27
Contributors
author
- Physics Department, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran
References
- [1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004), doi: 10.1126/science.1102896
- [2] M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nature Phys. 2, 620 (2006), doi: 10.1038/nphys384
- [3] H. Mohammadpour, A. Asgari, Phys. Lett. A 375, 10 (2011), doi: 10.1016/j.physleta.2011.01.026
- [4] Th. Martin, R. Landauer, Phys. Rev. A 45, 2611 (1992), doi: 10.1103/PhysRevA.45.2611
- [5] E.H. Hauge, J.A. Støvneng, Rev. Mod. Phys. 61, 917 (1989), doi: 10.1103/RevModPhys.61.917
- [6] M. Büttiker, Phys. Rev. B 27, 6178 (1983), doi: 10.1103/PhysRevB.27.6178
- [7] S. Gasiorowicz, Quantum Physics, 3rd ed., John Wiley & Sons, New York 2003
- [8] T.E. Hartman, J. Appl. Phys. 33, 3427 (1962), doi: 10.1063/1.1702424
- [9] J.R. Fletcher, J. Phys. C 18, L55 (1985), doi: 10.1088/0022-3719/18/2/004
- [10] Z. Wu, K. Chang, J.T. Liu, X.J. Li, K.S. Chan, J. Appl. Phys. 105, 043702 (2009), doi: 10.1063/1.3078079
- [11] M.M. Asmar, S.E. Ulloa, Phys. Rev. B 91, 165407 (2015), doi: 10.1103/PhysRevB.91.165407
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n318kz