PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 737-742
Article title

The Cryogenic Enrichment System in Chromatographic Analysis of Noble Gases in Groundwater

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The concentration of helium in groundwater may be a good environmental tracer for groundwater dating in hydrogeology. In this work, we present a chromatographic method for simultaneous analysis of helium, neon, and argon in groundwater from a single groundwater sample. Proper use of environmental tracers for dating purposes requires the knowledge of the recharge temperature of the system and the excess air. Both parameters can be determined by measuring the concentration of argon and neon in groundwater. The lowest helium concentration in groundwater is 4.8×10¯⁸ cm³_{STP}/g_{H₂O} at sea level and temperature 10°C. In view of the deficiency of a suitable detector with a limit of detection for helium at the level of 4.8×10¯⁸ cm³_{STP}/g_{H₂O}, the application of the enrichment method is necessary. In this work, the cryogenic method of enrichment with activated charcoal at abated pressure conditions was applied. Helium, neon and argon are analyzed on two gas chromatographs equipped with capillary and packed columns (filled with molecular sieve 5A and activated charcoal) and three thermo-conductive detectors. The chromatographic method was applied to groundwater dating from Kraków and Żarnowiec aquifers. The levels of detection for measurement systems for the tested compounds are: 1.9×10¯⁸ cm³_{STP}/cm³ for neon, 3.1×10¯⁶ cm³_{STP}/cm³ for argon, and 1.2×10¯⁸ cm³_{STP}/cm³ for helium.
Keywords
Year
Volume
130
Issue
3
Pages
737-742
Physical description
Dates
published
2016-09
received
2015-07-20
(unknown)
2016-07-18
References
  • [1] J.N. Andrews, Isotopes of noble gases as tracers in environmental studies, Mechanisms for noble gases dissolution by groundwaters, International Atomic Energy Agency, Vienna 1992, p. 87
  • [2] M.C. Castro, M. Stute, P. Schlosser, Appl. Geochem. 15, 1137 (2000), doi: 10.1016/S0883-2927(99)00113-4
  • [3] W. Aeschbach-Hertig, F. Peeters, U. Beyerle, K. Kipfer, Water Resour. Res. 35, 2779 (1999), doi: 10.1029/1999WR900130
  • [4] U. Beyerle, Ph.D. Thesis, The Swiss Federal Institute of Technology, Zürich 1999
  • [5] A. Zuber, W. Ciężkowski, K. Różański, Methodological Guide, The Publishing House of Wrocław University of Technology, Wrocław 2007
  • [6] J. Najman, Ph.D. Thesis, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków 2008
  • [7] U. Beyerle, W. Aeschbach-Hwertig, D.M. Imboden, H. Baur, T. Graf, R. Kipfer, Environm. Sci. Technol. 34, 2042 (2000), doi: 10.1021/es990840h
  • [8] J. Bielewski, I. Śliwka, Acta Phys. Pol. A 125, 895 (2014), doi: 10.12693/APhysPolA.125.895
  • [9] I. Śliwka, J. Lasa, Chem. Anal. (Warsaw) 45, 59 (2000)
  • [10] J. Lasa, P. Mochalski, J. Pusz, J. Chromatogr. A 1035, 261 (2004), doi: 10.1016/j.chroma.2004.02.077
  • [11] P. Mochalski, Ph.D. Thesis, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków 2003
  • [12] J. Najman, I. Śliwka, PIG Biuletyn 456/2, 419 (2013), (in Polish)
  • [13] A. Żurek, P. Mochalski, Geologia - Kwartalnik AGH 36, 135 (2010), (in Polish)
  • [14] H. Ogino, Y. Aomura, Anal. Chem. 61, 2237 (1989), doi: 10.1021/ac00195a005
  • [15] H. Ogino, Y. Aomura, T. Seki, Anal. Chem. 63, 1376 (1991), doi: 10.1021/ac00014a008
  • [16] E. Zieliński, Chem. Anal. 6, 787 (1961)
  • [17] A. Zuber, S.M. Weise, J. Motyka, K. Osenbrück, K. Różański, J. Hydrol. 286, 87 (2004), doi: 10.1016/j.jhydrol.2003.09.004
  • [18] T. Kotowski, M. Kachnic, Environm. Earth Sci. 75, 192 (2016), doi: 10.1007/s12665-015-4962-x
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n313kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.