PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 718-726
Article title

Chirped Optical Solitons in Birefringent Fibers with Parabolic Law Nonlinearity and Four-Wave Mixing

Content
Title variants
Languages of publication
EN
Abstracts
EN
We investigate exact soliton solutions with nonlinear chirp for the coupled nonlinear Schrödinger equations with cubic-quintic nonlinearity, self-steepening, self-frequency shift and four-wave mixing. The model governs the femtosecond pulse propagation in birefringent fibers. We introduce a new ansatz to obtain the nonlinear chirp associated with the propagating soliton pulses. New chirped soliton pair solutions with non-trivial chirping are found for the coupled nonlinear equations, illustrating the potentially rich set of solitonic pulse solutions of the model with higher-order effects. The solutions comprise two types of bright-W-shaped and bright-bright soliton pairs as well as kink and anti-kink pulses. Interestingly, the bright wave in the bright-W shaped soliton pairs possesses a platform underneath it, originating from the self-steepening and self-frequency shift effects. The corresponding chirp associated with each of these optical soliton pairs is also determined. It is shown that the nonlinear chirp is related to the pair intensity and determined by self-frequency shift and pause self-steepening. Parametric conditions for the existence and uniqueness of chirped solutions are given.
Keywords
EN
Contributors
author
  • Radiation Physics Laboratory, Department of Physics, Faculty of Sciences, Badji Mokhtar University, P.O. Box 12, 23000 Annaba, Algeria
author
  • Department of Mathematical Science, Delaware State University, Dover, DE 19901-2277, USA
  • Faculty of Science, Department of Mathematics, King Abdulaziz University, Jeddah-21589, Saudi Arabia
author
  • Faculty of Electronic Engineering, Department of Telecommunications, University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia
author
  • Science Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
References
  • [1] G.P. Agrawal, Nonlinear Fiber Optics, Academic, New York 1995
  • [2] A. Hesegawa, Y. Kodama, Solitons in Optical Communication, Oxford University Press, Oxford 1995
  • [3] P.K. Shukla, B. Eliasson, Phys. Usp. 53, 51 (2010), doi: 10.3367/UFNe.0180.201001b.0055
  • [4] F. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, World Sci., Singapore 1992
  • [6] Min Li, Bo Tian, Wen-Jun Liu, Hai-Qiang Zhang, Pan Wang, Phys. Rev. E 81, 046606 (2010), doi: 10.1103/PhysRevE.81.046606
  • [6] Shaowu Zhang, Lin Yi, Phys. Rev. E 78, 026602 (2008), doi: 10.1103/PhysRevE.78.026602
  • [7] V.M. Vyas, P. Patel, P.K. Panigrahi, C.N. Kumar, W. Greiner, Phys. Rev. A 78, 021803 (R) (2008), doi: 10.1103/PhysRevA.78.021803
  • [8] K. Porsezian, B. Kalithasan, Chaos Solitons Fract. 31, 188 (2007), doi: 10.1016/j.chaos.2005.09.044
  • [9] H. Triki, F. Azzouzi, Ph. Grelu, Opt. Commun. 309, 71 (2013), doi: 10.1016/j.optcom.2013.06.039
  • [10] F. Azzouzi, H. Triki, Ph. Grelu, Appl. Math. Modell. 39, 1300 (2015), doi: 10.1016/j.apm.2014.08.011
  • [11] H. Triki, A. Biswas, Math. Methods Appl. Sci. 34, 958 (2011), doi: 10.1002/mma.1414
  • [12] S.L. Palacios, A. Guinea, J.M. Fernández-Díaz, R.D. Crespo, Phys. Rev. E 60, R45 (1999), doi: 10.1103/PhysRevE.60.R45
  • [13] Yongsheng Tao, Jingsong He, Phys. Rev. E 85, 026601 (2012), doi: 10.1103/PhysRevE.85.026601
  • [14] Wei-Ping Zhong, M. Belić, Phys. Rev. E 82, 047601 (2010), doi: 10.1103/PhysRevE.82.047601
  • [15] N.Z. Petrović, M. Belić, Wei-Ping Zhong, Phys. Rev. E 83, 026604 (2011), doi: 10.1103/PhysRevE.83.026604
  • [16] Wen-Jun Liu, Bo Tian, Hai-Qiang Zhang, Tao Xu, He Li, Phys. Rev. A 79, 063810 (2009), doi: 10.1103/PhysRevA.79.063810
  • [17] A. Biswas, Phys. Lett. A 372, 5941 (2008), doi: 10.1016/j.physleta.2008.07.052
  • [18] Z. Li, L. Li, H. Tian, G. Zhou, Phys. Rev. Lett. 84, 4096 (2000), doi: 10.1103/PhysRevLett.84.4096
  • [19] A. Choudhuri, K. Porsezian, Opt. Commun. 285, 364 (2012), doi: 10.1016/j.optcom.2011.09.043
  • [20] K.M. Spaulding, D.H. Yong, A.D. Kim, J.N. Kutz, J. Opt. Soc. Am. B 19, 1045 (2002), doi: 10.1364/JOSAB.19.001045
  • [21] Xing Lü, Bo Tian, Phys. Rev. E 85, 026117 (2012), doi: 10.1103/PhysRevE.85.026117
  • [22] I.P. Kaminow, IEEE J. Quantum Electron. 17, 15 (1981), doi: 10.1109/JQE.1981.1070626
  • [23] Alka, A. Goyal, R. Gupta, C.N. Kumar, T.S. Raju, Phys. Rev. A 84, 063830 (2011), doi: 10.1103/PhysRevA.84.063830
  • [24] C.N. Kumar, P. Durganandini, Pramana J. Phys. 53, 271 (1999)
  • [25] M. Desaix, L. Helczynski, D. Anderson, M. Lisak, Phys. Rev. E 65, 056602 (2002), doi: 10.1103/PhysRevE.65.056602
  • [26] V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. Lett. 90, 113902 (2003), doi: 10.1103/PhysRevLett.90.113902
  • [27] R. Radhakrishnan, A. Kundu, M. Lakshmanan, Phys. Rev. E 60, 3314 (1999), doi: 10.1103/PhysRevE.60.3314
  • [28] Pan Wang, Bo Tian, Opt. Commun. 285, 3567 (2012), doi: 10.1016/j.optcom.2012.04.023
  • [29] Feng-Hua Qi, Bo Tian, Xing Lü, Rui Guo, Yu-Shan Xue, Commun. Nonlin. Sci. Numer. Simulat. 17, 2372 (2012), doi: 10.1016/j.cnsns.2011.10.017
  • [30] A.H. Bhrawy, A.A. Alshaery, E.M. Hilal, M. Savescu, D. Milovic, K.R. Khan, M.F. Mahmood, Z. Jovanoski, A. Biswas, Optik 125, 4935 (2014), doi: 10.1016/j.ijleo.2014.04.025
  • [31] D. Milović, A. Biswas, Serb. J. Electr. Eng. 10, 365 (2013), doi: 10.2298/SJEE130824009M
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n310kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.