Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 688-691

Article title

Numerical Study for Fractional Euler-Lagrange Equations of a Harmonic Oscillator on a Moving Platform

Content

Title variants

Languages of publication

EN

Abstracts

EN
We investigate the fractional harmonic oscillator on a moving platform. We obtained the fractional Euler-Lagrange equation from the derived fractional Lagrangian of the system which contains left Caputo fractional derivative. We transform the obtained differential equation of motion into a corresponding integral one and then we solve it numerically. Finally, we present many numerical simulations.

Keywords

Contributors

author
  • Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, 06530 Ankara, Turkey
  • Institute of Space Sciences, P.O. Box, MG-23, 76900 Magurele-Bucharest, Romania
author
  • Institute of Mathematics, Częstochowa University of Technology, al. Armii Krajowej 21, 42-201 Częstochowa, Poland
author
  • Department of Physics, College of Arts and Sciences, Palestine Technical University, P.O. Box 7, Tulkarm, Palestine
author
  • Department of Mathematics, Faculty of Basic Science, Babol University of Technology, P.O. Box 4717-1167, Babol, Iran

References

  • [1] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam 2006
  • [2] M. Lazarevic, Advanced Topics on Applications of Fractional Calculus on Control Problems, System Stability and Modeling, WSEAS Press, 2014 http://wseas.org/main/books/2014/Lazarevic/Lazarevic.pdf
  • [3] W. Sumelka, T. Blaszczyk, C. Liebold, Europ. J. Mech. A/Solids 54, 243 (2015), doi: 10.1016/j.euromechsol.2015.07.002
  • [4] F. Riewe, Phys. Rev. E 53, 1890 (1996), doi: 10.1103/PhysRevE.53.1890
  • [5] O.P. Agrawal, J. Vibrat. Contr. 13, 1217 (2007), doi: 10.1177/1077546307077472
  • [6] D. Baleanu, O.P. Agrawal, Nuovo Cim. B 119, 73 (2004), doi: 10.1393/ncb/i2003-10062-y
  • [7] D. Baleanu, T. Avkar, Czech. J. Phys. 56, 1087 (2006), doi: 10.1007/s10582-006-0406-x
  • [8] M. Klimek, Czech. J. Phys. 51, 1348 (2001), doi: 10.1023/A:1013378221617
  • [9] M. Klimek, T. Odzijewicz, A.B. Malinowska, J. Math. Anal. Appl. 416, 402 (2014), doi: 10.1016/j.jmaa.2014.02.009
  • [10] A.B. Malinowska, T. Odzijewicz, D.F.M. Torres, Advanced Methods in the Fractional Calculus of Variations, Springer Int. Publ., London 2015, doi: 10.1007/978-3-319-14756-7
  • [11] S.I. Muslih, D. Baleanu, J. Math. Anal. Appl. 304, 599 (2005), doi: 10.1016/j.jmaa.2004.09.043
  • [12] E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, D. Baleanu, J. Math. Anal. Appl. 327, 891 (2007), doi: 10.1016/j.jmaa.2006.04.076
  • [13] F. Riewe, Phys. Rev. E 55, 3581 (1997), doi: 10.1103/PhysRevE.55.3581
  • [14] R. Almeida, S. Pooseh, D.F.M. Torres, Computational Methods in the Fractional Calculus of Variations, Imperial College Press, Singapore 2015
  • [15] D. Baleanu, J.H. Asad, I. Petras, Commun. Theor. Phys. 61, 221 (2014), doi: 10.1088/0253-6102/61/2/13
  • [16] D. Baleanu, J.H. Asad, I. Petras, Nonlin. Dyn. 81, 97 (2015), doi: 10.1007/s11071-015-1975-7
  • [17] T. Blaszczyk, Rom. Rep. Phys. 67, 350 (2015)
  • [18] P. Kumar, O.P. Agrawal, Signal Proc. 86, 2602 (2006), doi: 10.1016/j.sigpro.2006.02.007
  • [19] R. Scherer, S.L. Kalla, Y. Tang, J. Huang, Comput. Math. Appl. 62, 902 (2011), doi: 10.1016/j.camwa.2011.03.054
  • [20] M.J. Lazo, D.F.M. Torres, J. Optim. Theory Appl. 156, 56 (2013), doi: 10.1007/s10957-012-0203-6
  • [21] T. Blaszczyk, M. Ciesielski, Appl. Math. Comput. 257, 428 (2015), doi: 10.1016/j.amc.2014.12.122
  • [22] M. Ciesielski, T. Blaszczyk, J. Theor. Appl. Mech. 53, 959 (2015), doi: 10.15632/jtam-pl.53.4.959
  • [23] A.P. Durajski, Eur. Phys. J. B 87, 210 (2014), doi: 10.1140/epjb/e2014-50300-5
  • [24] A.P. Durajski, Supercond. Sci. Technol. 28, 035002 (2015), doi: 10.1088/0953-2048/28/3/035002
  • [25] J. Siedlecki, M. Ciesielski, T. Blaszczyk, J. Appl. Math. Comput. Mech. 14, 103 (2015), doi: 10.17512/jamcm.2015.3.11

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n304kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.