Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 683-687
Article title

Frequency Stop Band in an Air-Voided ZnO Photonic Crystal: A Dispersion Diagram Based Design

Title variants
Languages of publication
Electromagnetic excitation, inside small volumes, results in perturbations which play an important role in the validation of theoretical formulations. Efforts to catch a glimpse of the action inside of the small space, can aid better thin film designs. In the non-linear anisotropic regime the results of such interactions provide important insights into the bulk level behavior of matter. Using this approach, a zinc oxide (ZnO) based photonic crystal is designed with spherical air voids. A Gaussian continuous wave excitation of the refractive index contrast (ZnO=1.9 and Air =1) photon waveguide generated thus, is characterized for the redistribution of electromagnetic field. When, centered at a specific wavelength (1.9 μ m), the graph of the frequencies that can exist inside the crystal, is plotted against the limited k-space vector. The dispersion diagram that emerges shows a band of frequency states that cannot exist inside such a design. Physically this constitutes a k-space which is devoid of any detectable disturbances. Crystallographically, the reduced Brilluoin zone can be used to make a thin layer of ZnO that can act as a frequency stop layer, in a real multilayered photoelectric device.
  • Department of Electronics & Communication Engineering, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, MP, 482001, India
  • Department of Natural Sciences, Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, MP, 482001, India
  • [1] M.L. Gill, Phronesis 32, 1 (1987), doi: 10.1163/156852887X00028
  • [2] V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968), doi: 10.1070/PU1968v010n04ABEH003699
  • [3] J.B. Pendry, Phys. Rev. Lett. 85, 18 (2000), doi: 10.1103/PhysRevLett.85.3966
  • [4] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987), doi: 10.1103/PhysRevLett.58.2059
  • [5] R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001), doi: 10.1126/science.1058847
  • [6] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., Princeton University Press, Princeton 2008
  • [7] D.J. Lockwood, Silicon Photonics, Vol. 1, Ed. L. Pavesi, Springer Sci. & Business Media, 2004, p. 3102
  • [8] Meiling Liu, Maojin Yun, Feng Xia, Jian Liang, Proc. SPIE 8497, 849717 (2012), doi: 10.1117/12.928562
  • [9] M. Selvanayagam, G.V. Eleftheriades, Phys. Rev. X 3, 041011 (2013), doi: 10.1103/PhysRevX.3.041011
  • [10] Z.L. Wang, J. Phys. Chem. B 104, 1153 (2000), doi: 10.121/jp993593c
  • [11] Jin-Hong Lee, Kyung-Hee Ko, Byung-Ok Park, J. Cryst. Growth 247, 1 (2003), doi: 10.1016/S022- 0248(02)01907-3
  • [12] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Jpn. J. Appl. Phys. 36/2, 11A (1997), doi: 10.1143/JJAP.36.L1453
  • [13] Product manual of OptiFDTD component designer
  • [14] Jia-Zhe Liu, M.D.B. Charlton, Chung-Hsiang Lin, Kang-Yuan Lee, Chirenjeevi Krishnan, Meng-Chyi Wu, IEEE J. Quantum. Electron. 50, 314 (2014), doi: 10.1109/JQE.2014.2309137
  • [15] Y.S. Park, J.R. Schneider, J. Appl. Phys. 39, 3049 (1968), doi: 10.1063/1.1656731
  • [16] R.W. Ziolkowski, Opt. Expr. 11, 662 (2003), doi: 10.1364/OE.11.000662
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.