Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 679-682

Article title

A Fifth-Order Korteweg-de Vries Equation for Shallow Water with Surface Tension: Multiple Soliton Solutions

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work we study a fifth-order Korteweg-de Vries equation for shallow water with surface tension derived by Dullin et al. The fifth-order Korteweg-de Vries equation, derived by using the nonlinear/non-local transformations introduced by Kodama, and the Camassa-Holm equation with linear dispersion, have very different behaviors despite being asymptotically equivalent. We use the simplified form of the Hirota direct method to derive multiple soliton solutions for this equation.

Keywords

EN

Year

Volume

130

Issue

3

Pages

679-682

Physical description

Dates

published
2016-09
received
2015-08-07
(unknown)
2016-03-03

Contributors

author
  • Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA

References

  • [1] H.R. Dullin, G.A. Gottwald, D.D. Holm, Fluid Dyn. Res. 33, 73 (2003), doi: 10.1016/S0169-5983(03)00046-7
  • [2] H.R. Dullin, G.A. Gottwald, D.D. Holm, Physica D 190, 1 (2004), doi: 10.1016/j.physd.2003.11.004
  • [3] Y. Kodama, Phys. Lett. A 107, 245 (1985), doi: 10.1016/0375-9601(85)90207-5
  • [4] Y. Kodama, Phys. Lett. A 123, 276 (1987), doi: 10.1016/0375-9601(87)90227-1
  • [5] W.-R. Sun, W.-R. Shan, Y. Jiang, P. Wang, B. Tian, Eur. Phys. J. D 69, 47 (2015), doi: 10.1140/epjd/e2014-50687-y
  • [6] N. Khanal, R. Sharma, J. Wu, J.-M. Yuan, Discr. Contin. Dyn. Syst. 12, 442 (2009), doi: 10.3934/proc.2009.2009.442
  • [7] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge 2004
  • [8] W. Hereman, A. Nuseir, Math. Comput. Simulat. 43, 13 (1997), doi: 10.1016/S0378-4754(96)00053-5
  • [9] R. Camassa, D. Holm, Phys. Rev. Lett. 71, 1661 (1993), doi: 10.1103/PhysRevLett.71.1661
  • [10] H. Leblond, D. Mihalache, Phys. Rep. 523, 61 (2013), doi: 10.1016/j.physrep.2012.10.006
  • [11] H. Leblond, D. Mihalache, Phys. Rev. A 79, 063835 (2009), doi: 10.1103/PhysRevA.79.063835
  • [12] C.M. Khalique, J. Appl. Math. 2013, 1 (2013), doi: 10.1155/2013/741780
  • [13] C.M. Khalique, K.R. Adem, Math. Comput. Modell. 54, 184 (2011), doi: 10.1016/j.mcm.2011.01.049
  • [14] X. Lu, W.-X. Ma, C.M. Khalique, Appl. Math. Lett. 50, 37 (2015), doi: 10.1016/j.aml.2015.06.003
  • [15] W.X. Ma, Z. Zhu, Appl. Math. Computat. 218, 11871 (2012), doi: 10.1016/j.amc.2012.05.049
  • [16] W.X. Ma, A. Abdeljabbar, M.G. Asaad, Appl. Math. Comput. 217, 10016 (2011), doi: 10.1016/j.amc.2011.04.077
  • [17] M. Dehghan, A. Shokri, Comput. Math. Simul. 79, 700 (2008), doi: 10.1016/j.matcom.2008.04.018
  • [18] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin 2009
  • [19] A.M. Wazwaz, Phys. Scr. 83, 015012 (2011), doi: 10.1088/0031-8949/83/01/015012
  • [20] A.M. Wazwaz, Phys. Scr. 83, 035003 (2011), doi: 10.1088/0031-8949/83/03/035003
  • [21] A.M. Wazwaz, Phys. Scr. 84, 025007 (2011), doi: 10.1088/0031-8949/84/02/025007
  • [22] G.Q. Xu, A.M. Wazwaz, Math. Meth. Appl. Sci. In Press New bilinearization, Bäcklund transformation and infinite conservation laws for the KdV6 equation with binary Bell polynomials, (2016), doi: 10.1002/mma.3723
  • [23] G.Q. Xu, S.B. Li, Comput. Phys. Commun. 161, 65 (2004), doi: 10.1016/j.cpc.2004.04.005
  • [24] G.Q. Xu, Phys. Rev. E 74, 027602 (2006), doi: 10.1103/PhysRevE.74.027602
  • [25] G.Q. Xu, Z.Z. Huang, Chin. Phys. Lett. 30, 030202 (2013), doi: 10.1088/0256-307X/30/3/030202
  • [26] G.Q. Xu, Phys. Scr. 89, 125201 (2014), doi: 10.1088/0031-8949/89/12/125201
  • [27] A.M. Wazwaz, G.Q. Xu, Commun. Theor. Phys. 63, 727 (2015), doi: 10.1088/0253-6102/63/6/727
  • [28] A.M. Wazwaz, Appl. Math. Comput. 190, 633 (2007), doi: 10.1016/j.amc.2007.01.056
  • [29] A.M. Wazwaz, Appl. Math. Comput. 190, 1198 (2007), doi: 10.1016/j.amc.2007.02.003
  • [30] A.M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 12, 1395 (2007), doi: 10.1016/j.cnsns.2005.11.007
  • [31] T.R. Marchant, N.F. Smyth, IMA J. Appl. Math. 56, 157 (1996), doi: 10.1093/imamat/56.2.157
  • [32] G.I. Burde, A. Sergyeyev, J. Phys. A Math. Theor. 46, 075501 (2013), doi: 10.1088/1751-8113/46/7/075501
  • [33] A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 90, 012907 (2014), doi: 10.1103/PhysRevE.90.012907
  • [34] A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 92, 053202 (2015), doi: 10.1103/PhysRevE.92.053202

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n302kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.