PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 679-682
Article title

A Fifth-Order Korteweg-de Vries Equation for Shallow Water with Surface Tension: Multiple Soliton Solutions

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work we study a fifth-order Korteweg-de Vries equation for shallow water with surface tension derived by Dullin et al. The fifth-order Korteweg-de Vries equation, derived by using the nonlinear/non-local transformations introduced by Kodama, and the Camassa-Holm equation with linear dispersion, have very different behaviors despite being asymptotically equivalent. We use the simplified form of the Hirota direct method to derive multiple soliton solutions for this equation.
Keywords
EN
Year
Volume
130
Issue
3
Pages
679-682
Physical description
Dates
published
2016-09
received
2015-08-07
(unknown)
2016-03-03
References
  • [1] H.R. Dullin, G.A. Gottwald, D.D. Holm, Fluid Dyn. Res. 33, 73 (2003), doi: 10.1016/S0169-5983(03)00046-7
  • [2] H.R. Dullin, G.A. Gottwald, D.D. Holm, Physica D 190, 1 (2004), doi: 10.1016/j.physd.2003.11.004
  • [3] Y. Kodama, Phys. Lett. A 107, 245 (1985), doi: 10.1016/0375-9601(85)90207-5
  • [4] Y. Kodama, Phys. Lett. A 123, 276 (1987), doi: 10.1016/0375-9601(87)90227-1
  • [5] W.-R. Sun, W.-R. Shan, Y. Jiang, P. Wang, B. Tian, Eur. Phys. J. D 69, 47 (2015), doi: 10.1140/epjd/e2014-50687-y
  • [6] N. Khanal, R. Sharma, J. Wu, J.-M. Yuan, Discr. Contin. Dyn. Syst. 12, 442 (2009), doi: 10.3934/proc.2009.2009.442
  • [7] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge 2004
  • [8] W. Hereman, A. Nuseir, Math. Comput. Simulat. 43, 13 (1997), doi: 10.1016/S0378-4754(96)00053-5
  • [9] R. Camassa, D. Holm, Phys. Rev. Lett. 71, 1661 (1993), doi: 10.1103/PhysRevLett.71.1661
  • [10] H. Leblond, D. Mihalache, Phys. Rep. 523, 61 (2013), doi: 10.1016/j.physrep.2012.10.006
  • [11] H. Leblond, D. Mihalache, Phys. Rev. A 79, 063835 (2009), doi: 10.1103/PhysRevA.79.063835
  • [12] C.M. Khalique, J. Appl. Math. 2013, 1 (2013), doi: 10.1155/2013/741780
  • [13] C.M. Khalique, K.R. Adem, Math. Comput. Modell. 54, 184 (2011), doi: 10.1016/j.mcm.2011.01.049
  • [14] X. Lu, W.-X. Ma, C.M. Khalique, Appl. Math. Lett. 50, 37 (2015), doi: 10.1016/j.aml.2015.06.003
  • [15] W.X. Ma, Z. Zhu, Appl. Math. Computat. 218, 11871 (2012), doi: 10.1016/j.amc.2012.05.049
  • [16] W.X. Ma, A. Abdeljabbar, M.G. Asaad, Appl. Math. Comput. 217, 10016 (2011), doi: 10.1016/j.amc.2011.04.077
  • [17] M. Dehghan, A. Shokri, Comput. Math. Simul. 79, 700 (2008), doi: 10.1016/j.matcom.2008.04.018
  • [18] A.M. Wazwaz, Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin 2009
  • [19] A.M. Wazwaz, Phys. Scr. 83, 015012 (2011), doi: 10.1088/0031-8949/83/01/015012
  • [20] A.M. Wazwaz, Phys. Scr. 83, 035003 (2011), doi: 10.1088/0031-8949/83/03/035003
  • [21] A.M. Wazwaz, Phys. Scr. 84, 025007 (2011), doi: 10.1088/0031-8949/84/02/025007
  • [22] G.Q. Xu, A.M. Wazwaz, Math. Meth. Appl. Sci. In Press New bilinearization, B├Ącklund transformation and infinite conservation laws for the KdV6 equation with binary Bell polynomials, (2016), doi: 10.1002/mma.3723
  • [23] G.Q. Xu, S.B. Li, Comput. Phys. Commun. 161, 65 (2004), doi: 10.1016/j.cpc.2004.04.005
  • [24] G.Q. Xu, Phys. Rev. E 74, 027602 (2006), doi: 10.1103/PhysRevE.74.027602
  • [25] G.Q. Xu, Z.Z. Huang, Chin. Phys. Lett. 30, 030202 (2013), doi: 10.1088/0256-307X/30/3/030202
  • [26] G.Q. Xu, Phys. Scr. 89, 125201 (2014), doi: 10.1088/0031-8949/89/12/125201
  • [27] A.M. Wazwaz, G.Q. Xu, Commun. Theor. Phys. 63, 727 (2015), doi: 10.1088/0253-6102/63/6/727
  • [28] A.M. Wazwaz, Appl. Math. Comput. 190, 633 (2007), doi: 10.1016/j.amc.2007.01.056
  • [29] A.M. Wazwaz, Appl. Math. Comput. 190, 1198 (2007), doi: 10.1016/j.amc.2007.02.003
  • [30] A.M. Wazwaz, Commun. Nonlinear Sci. Numer. Simul. 12, 1395 (2007), doi: 10.1016/j.cnsns.2005.11.007
  • [31] T.R. Marchant, N.F. Smyth, IMA J. Appl. Math. 56, 157 (1996), doi: 10.1093/imamat/56.2.157
  • [32] G.I. Burde, A. Sergyeyev, J. Phys. A Math. Theor. 46, 075501 (2013), doi: 10.1088/1751-8113/46/7/075501
  • [33] A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 90, 012907 (2014), doi: 10.1103/PhysRevE.90.012907
  • [34] A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 92, 053202 (2015), doi: 10.1103/PhysRevE.92.053202
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n302kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.