PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 3 | 667-678
Article title

Solutions for Conservative Nonlinear Oscillators Using an Approximate Method Based on Chebyshev Series Expansion of the Restoring Force

Content
Title variants
Languages of publication
EN
Abstracts
EN
Approximate solutions for small and large amplitude oscillations of conservative systems with odd nonlinearity are obtained using a "cubication" method. In this procedure, the Chebyshev polynomial expansion is used to replace the nonlinear function by a third-order polynomial equation. The original second-order differential equation, which governs the dynamics of the system, is replaced by the Duffing equation, whose exact frequency and solution are expressed in terms of the complete elliptic integral of the first kind and the Jacobi elliptic function cn, respectively. Then, the exact solution for the Duffing equation is the approximate solution for the original nonlinear differential equation. The coefficients for the linear and cubic terms of the approximate Duffing equation - obtained by "cubication" of the original second-order differential equation - depend on the initial oscillation amplitude. Six examples of different types of common conservative nonlinear oscillators are analysed to illustrate this scheme. The results obtained using the cubication method are compared with those obtained using other approximate methods such as the harmonic, linearized and rational balance methods as well as the homotopy perturbation method. Comparison of the approximate frequencies and solutions with the exact ones shows good agreement.
Keywords
EN
Year
Volume
130
Issue
3
Pages
667-678
Physical description
Dates
published
2016-09
received
2015-06-16
(unknown)
2016-08-08
References
  • [1] A.H. Nayfeh, Problems in Perturbation, Wiley, New York 1985
  • [2] R.E. Mickens, Oscillations in Planar Dynamics Systems, World Sci., Singapore 1996
  • [3] M.H. Pashai, I. Khatami, N. Tolou, Math. Prob. Eng. 2008, 956170 (2008), doi: 10.1155/2008/956170
  • [4] S.J. Liao, Appl. Math. Mech. 19, 885 (1998), doi: 10.1007/BF02457955
  • [5] A. Elías-Zúñiga, O. Martínez-Romero, Math. Prob. Eng. 2013, 620591 (2013), doi: 10.1155/2013/620591
  • [6] M.O. Kaya, S. Altay Demirbağ, F. Özen Zengin, Math. Prob. Eng. 2009, 450862 (2009), doi: 10.1155/2009/450862
  • [7] V. Marinca, N. Herişanu, Chaos Soliton Fract. 37, 144 (2008), doi: 10.1016/j.chaos.2006.08.033
  • [8] S.S. Motsa, P. Sibanda, Math. Prob. Eng. 2012, 693453 (2012), doi: 10.1155/2012/693453
  • [9] C. Bota, B. Căruntu, O. Bundău, Math. Prob. Eng. 2014, 513473 (2014), doi: 10.1155/2014/513473
  • [10] A. Beléndez, M.L. Alvarez, E. Fernández, I. Pascual, Eur. J. Phys. 30, 973 (2009), doi: 10.1088/0143-0807/30/5/006
  • [11] J.H. Denman, J. Appl. Mech. 36, 358 (1969), doi: 10.1115/1.3564651
  • [12] R.E. Jonckheere, Z. Angew. Math. Mech. 51, 389 (1971), doi: 10.1002/zamm.19710510508
  • [13] Orthogonal Polynomials, in: Handbook of Mathematical Functions with Formulas, Graphics and Mathematical Tables, Eds. M. Abramowitz, I.A. Stegun, 9th ed., Dover, New York 1972, Ch. 22, p. 771
  • [14] E.W. Weisstein, Chebyshev Polynomial of the First Kind, from MathWorld - A Wolfram web resource, http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html
  • [15] A. Beléndez, M.L. Alvarez, E. Fernández, I. Pascual, Eur. J. Phys. 30, 259 (2009), doi: 10.1088/0143-0807/30/2/004
  • [16] B.S. Wu, W.P. Sun, C.W. Lim, Int. J. Non-Linear Mech. 41, 766 (2006), doi: 10.1016/j.ijnonlinmec.2006.01.006
  • [17] A. Beléndez, E. Gimeno, M.L. Alvarez, S. Gallego, M. Ortuño, D.I. Méndez, Int. Nonlin. Sci. Num. Simulat. 10, 13 (2009), doi: 10.1515/IJNSNS.2009.10.1.13
  • [18] A. Beléndez, A. Hernández, T. Beléndez, C. Neipp, A. Márquez, Phys. Lett. A 372, 2010 (2008), doi: 10.1016/j.physleta.2007.10.081
  • [19] M. Febbo, Appl. Math. Comput. 217, 6464 (2011), doi: 10.1016/j.amc.2011.01.011
  • [20] I. Kovacic, Z. Rakaric, L. Cveticanin, Appl. Math. Comput. 217, 3944 (2010), doi: 10.1016/j.amc.2010.09.058
  • [21] A. Beléndez, E. Gimeno, M.L. Alvarez, M.S. Yebra, D.I. Méndez, Int. J. Comput. Math. 87, 1497 (2010), doi: 10.1080/00207160802380942
  • [22] A. Beléndez, C. Pascual, T. Beléndez, A. Hernández, Nonlinear Anal. Real World Appl. 10, 416 (2009), doi: 10.1016/j.nonrwa.2007.10.002
  • [23] R.E. Mickens, J. Sound Vibrat. 292, 964 (2006), doi: 10.1016/j.jsv.2005.08.020
  • [24] C.W. Lim, B.S. Wu, J. Sound Vibrat. 281, 1157 (2005), doi: 10.1016/j.jsv.2004.04.030
  • [25] A. Beléndez, C. Pascual, S. Gallego, M. Ortuño, C. Neipp, Phys. Lett. A 371, 421 (2007), doi: 10.1016/j.physleta.2007.06.042
  • [26] A. Beléndez, A. Hernández, T. Beléndez, M.L. Alvarez, S. Gallego, M. Ortuño, C. Neipp, J. Sound Vibrat. 302, 1018 (2007), doi: 10.1016/j.jsv.2006.12.011
  • [27] W.P. Sun, B.S. Wu, C.W. Lim, J. Sound Vibrat. 300, 1042 (2007), doi: 10.1016/j.jsv.2006.08.025
  • [28] E. Gimeno, M.L. Álvarez, M.S. Yebra, J. Rosa-Herranz, A. Beléndez, Int. Nonlin. Sci. Num. Simulat. 10, 493 (2009), doi: 10.1515/IJNSNS.2009.10.4.493
  • [29] L. Cveticanin, T. Pogány, J. Appl. Math. 2002, 649050 (2012), doi: 10.1155/2012/649050
  • [30] A. Beléndez, E. Arribas, J. Francés, I. Pascual, Appl. Math. Comput. 218, 6168 (2012), doi: 10.1016/j.amc.2011.12.012
  • [31] A. Beléndez, E. Arribas, J. Francés, I. Pascual, Math. Comput. Mod. 54, 3204 (2011), doi: 10.1016/j.mcm.2011.06.024
  • [32] E.W. Weisstein, Hypergeometric Function, from MathWorld - A Wolfram Web Resource, http://mathworld.wolfram.com/HypergeometricFunction.html
  • [33] A. Beléndez, T. Beléndez, F.J. Martínez, C. Pascual, M.L. Alvarez, E. Arribas, Nonlinear Dyn. 85, 1 (2016), doi: 10.1007/s11071-016-2986-8
  • [34] A. Beléndez, D.I. Méndez, E. Fernández, S. Marini, I. Pascual, Phys. Lett. A 373, 2805 (2009), doi: 10.1016/j.physleta.2009.05.074
  • [35] A. Beléndez, G. Bernabeu, J. Francés, D.I. Méndez, S. Marini, Math. Comput. Mod. 52, 637 (2010), doi: 10.1016/j.mcm.2010.04.010
  • [36] A. Beléndez, M.L. Alvarez, J. Francés, S. Bleda, T. Beléndez, A. Nájera, E. Arribas, J. Appl. Math. 2012, 286290 (2012), doi: 10.1155/2012/286290
  • [37] A. Elías-Zúñiga, O. Martínez-Romero, R.K. Córdoba-Díaz, Math. Prob. Eng. 2012, 618750 (2012), doi: 10.1155/2012/618750
  • [38] A. Elías-Zúñiga, O. Martínez-Romero, Math. Prob. Eng. 2013, 842423 (2013), doi: 10.1155/2013/842423
  • [39] A. Elías-Zúñiga, Appl. Math. Comput. 243, 849 (2014), doi: 10.1016/j.amc.2014.05.085
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n301kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.