PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 659-663
Article title

The Green Function Variational Approximation: Significance of Physical Constraints

Content
Title variants
Languages of publication
EN
Abstracts
EN
We present a calculation of the spectral properties of a single charge doped at a Cu(3d) site of the Cu-F plane in KCuF₃. The problem is treated by generating the equations of motion for the Green function by means of subsequent Dyson expansions and solving the resulting set of equations. This method, dubbed the variational approximation, is both very dependable and flexible, since it is a systematic expansion with precise control over elementary physical processes. It allows for deep insight into the underlying physics of polaron formation as well as for inclusion of many physical constraints, such as excluding crossing diagrams and double occupation constraint, which are not included in the self-consistent Born approximation. Here we examine the role and importance of such constraints by analyzing various spectral functions obtained in second order variational approximation.
Keywords
Contributors
author
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, S. Łojasiewicza 11, PL-30-348 Kraków, Poland
  • Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z1
  • Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC, Canada V6T 1Z4
author
  • Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada V6T 1Z1
  • Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver BC, Canada V6T 1Z4
author
  • Marian Smoluchowski Institute of Physics, Jagiellonian University, S. Łojasiewicza 11, PL-30-348 Kraków, Poland
  • Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
References
  • [1] G. Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005), doi: 10.1143/PTPS.160.155
  • [2] A.J.W. Reitsma, L.F. Feiner, A.M. Oleś, New J. Phys. 7, 121 (2005), doi: 10.1088/1367-2630/7/1/121
  • [3] P. Wróbel, A.M. Oleś, Phys. Rev. Lett. 104, 206401 (2010), doi: 10.1103/PhysRevLett.104.206401
  • [4] W. Brzezicki, A.M. Oleś, M. Cuoco, Phys. Rev. X 5, 011037 (2015), doi: 10.1103/PhysRevX.5.011037
  • [5] G. Martínez, P. Horsch, Phys. Rev. B 44, 317 (1991), doi: 10.1103/PhysRevB.44.317
  • [6] S.A. Trugman, Phys. Rev. B 37, 1597 (1988), doi: 10.1103/PhysRevB.37.1597
  • [7] J. van den Brink, P. Horsch, A.M. Oleś, Phys. Rev. Lett. 85, 5174 (2000), doi: 10.1103/PhysRevLett.85.5174
  • [8] M. Daghofer, K. Wohlfeld, A.M. Oleś, E. Arrigoni, P. Horsch, Phys. Rev. Lett. 100, 066403 (2008), doi: 10.1103/PhysRevLett.100.066403
  • [9] L.F. Feiner, A.M. Oleś, Phys. Rev. B 71, 144422 (2005), doi: 10.1103/PhysRevB.72.144422
  • [10] M. Berciu, H. Fehske, Phys. Rev. B 84, 165104 (2011), doi: 10.1103/PhysRevB.84.165104
  • [11] F. Trousselet, M. Berciu, A.M. Oleś, P. Horsch, Phys. Rev. Lett. 111, 037205 (2013), doi: 10.1103/PhysRevLett.111.037205
  • [12] H. Ebrahimnejad, G.A. Sawatzky, M. Berciu, Nat. Phys. 10, 951 (2014), doi: 10.1038/nphys3130
  • [13] K. Bieniasz, A.M. Oleś, Phys. Rev. B 94, 085117 (2016), doi: 10.1103/PhysRevB.94.085117
  • [14] K. Bieniasz, A.M. Oleś, Phys. Rev. B 88, 115132 (2013), doi: 10.1103/PhysRevB.88.115132
  • [14a] K. Bieniasz, A.M. Oleś, Acta Phys. Pol. A 126, A-80 (2014), doi: 10.12693/APhysPolA.126.A-80
  • [15] K. Bieniasz, A.M. Oleś, Acta Phys. Pol. A 127, 269 (2015)9, doi: 10.12693/APhysPolA.127.26
  • [16] L. Cincio, J. Dziarmaga, A.M. Oleś, Phys. Rev. B 82, 104416 (2010), doi: 10.1103/PhysRevB.82.104416
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n236kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.