PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 649-654
Article title

Characteristics of the Eliashberg Formalism on the Example of High-Pressure Superconducting State in Phosphor

Content
Title variants
Languages of publication
EN
Abstracts
EN
The work describes the properties of the high-pressure superconducting state in phosphor: p∈ {20, 30, 40, 70} GPa. The calculations were performed in the framework of the Eliashberg formalism, which is the natural generalization of the BCS theory. The exceptional attention was paid to the accurate presentation of the used analysis scheme. With respect to the superconducting state in phosphor it was shown that the observed not-high values of the critical temperature ([T_{C}]_{p=30GPa}^{max}=8.45 K) result not only from the low values of the electron-phonon coupling constant, but also from the very strong depairing Coulomb interactions. Additionally the inconsiderable strong-coupling and retardation effects force the dimensionless ratios R_{Δ}, R_{C}, and R_{H} - related to the critical temperature, the order parameter, the specific heat, and the thermodynamic critical field - to take the values close to the BCS predictions.
Keywords
EN
Year
Volume
130
Issue
2
Pages
649-654
Physical description
Dates
published
2016-08
References
  • [1] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957), doi: 10.1103/PhysRev.106.162
  • [2] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.108.1175
  • [3] A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, New York 1971
  • [4] K. Elk, W. Gasser, The Method of Green Functions in the Solid State Physics, Akademie-Verlag, Berlin 1979 (in German)
  • [5] H. Fröhlich, Phys. Rev. 79, 845 (1950), doi: 10.1103/PhysRev.79.845
  • [6] H. Fröhlich, Proc. R. Soc. Lond. A 223, 296 (1954), doi: 10.1098/rspa.1954.0116
  • [7] G.M. Eliashberg, Sov. Phys. JETP 11, 696 (1960)
  • [8] J.P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990), doi: 10.1103/RevModPhys.62.1027
  • [9] J. Spałek, Introduction to Physics of Condensed Matter, PWN, 2015 (in Polish)
  • [10] A.P. Kądzielawa, A. Bielas, M. Acquarone, A. Biborski, M.M. Maśka, J. Spałek, New J. Phys. 16, 123022 (2014), doi: 10.1088/1367-2630/16/12/123022
  • [11] F. Marsiglio, M. Schossmann, J.P. Carbotte, Phys. Rev. B 37, 4965 (1988), doi: 10.1103/PhysRevB.37.4965
  • [12] R.W. Keyse, Phys. Rev. Lett. 92, 580 (1953), doi: 10.1103/PhysRev.92.580
  • [13] A. Morita, Appl. Phys. A Solids Surf. 39, 227 (1986), doi: 10.1007/BF00617267
  • [14] J.C. Jamieson, Science 139, 1291 (1963), doi: 10.1126/science.139.3561.1291
  • [15] Y. Akahama, M. Kobayashi, H. Kawamura, Phys. Rev. B 59, 8520 (1999), doi: 10.1103/PhysRevB.59.8520
  • [16] Y. Akahama, H. Kawamura, S. Carlson, T.L. Bihan, D. Hausermann, Phys. Rev. B 61, 3139 (2000), doi: 10.1103/PhysRevB.61.3139
  • [17] J. Wittig, B.T. Matthias, Science 160, 994 (1968), doi: 10.1126/science.160.3831.994
  • [18] I.V. Berman, N.B. Brandt, JETP Lett. 7, 326 (1968)
  • [19] H. Kawamura, I. Shirotani, K. Tachikawa, Solid State Commun. 49, 879 (1984), doi: 10.1016/0038-1098(84)90444-7
  • [20] H. Kawamura, I. Shirotani, K. Tachikawa, Solid State Commun. 54, 775 (1985), doi: 10.1016/0038-1098(85)90283-2
  • [21] J. Wittig, B. Bireckoven, T. Weidlich, Solid State Physics under Pressure, KTK Scientific Tokyo, 1985
  • [22] M. Karuzawa, M. Ishizuka, S. Endo, J. Phys. Condens. Matter, 14, 10759 (2002), doi: 10.1088/0953-8984/14/44/372
  • [23] M. Rajagopalan, M. Alouani, N.E. Christensen, J. Low Temp. Phys. 75, 1 (1989), doi: 10.1007/BF00688740
  • [24] M. Aoki, N. Suzuki, K. Motizuki, J. Phys. Soc. Jpn. 56, 3253 (1987), doi: 10.1143/JPSJ.56.3253
  • [25] H. Nagara, K. Mukose, T. Ishikawa, M. Geshi, N. Suzuki, J. Phys. Conf. Series 215, 012107 (2010), doi: 10.1088/1742-6596/215/1/012107
  • [26] L.W. Nixon, Ph.D. Thesis, George Mason University, 2010
  • [27] K.T. Chan, B.D. Malone, M.L. Cohen, Phys. Rev. B 88, 064517 (2013), doi: 10.1103/PhysRevB.88.064517
  • [28] R. Szczęśniak, D. Szczęśniak, E.A. Drzazga, Solid State Commun. 152, 2023 (2012), doi: 10.1016/j.ssc.2012.08.022
  • [29] R. Szczęśniak, E.A. Drzazga, Solid State Sci. 19, 167 (2013), doi: 10.1016/j.solidstatesciences.2013.02.025
  • [30] R. Szczęśniak, E.A. Drzazga, A.M. Duda, Solid State Commun. 166, 50 (2013), doi: 10.1016/j.ssc.2013.05.006
  • [31] E.A. Drzazga, R. Szczęśniak, A.M. Duda, Physica B 445, 68 (2014), doi: 10.1016/j.physb.2014.03.056
  • [32] R. Szczęśniak, A.M. Duda, E.A. Drzazga, Physica C 501, 7 (2014), doi: 10.1016/j.physc.2014.03.010
  • [33] R. Szczęśniak, E.A. Drzazga, D. Szczęśniak, Europ. Phys. J. B 88, 52 (2015), doi: 10.1140/epjb/e2015-50616-6
  • [34] R. Szczęśniak, M.W. Jarosik, D. Szczęśniak, Physica B 405, 4897 (2010), doi: 10.1016/j.physb.2010.09.036
  • [35] J. Bauer, J.E. Han, O. Gunnarsson, J. Phys. Condens. Matter 24, 492202 (2012), doi: 10.1088/0953-8984/24/49/492202
  • [36] P. Morel, P.W. Anderson, Phys. Rev. 125, 1263 (1962), doi: 10.1103/PhysRev.125.1263
  • [37] W.L. McMillan, Phys. Rev. 167, 331 (1968), doi: 10.1103/PhysRev.167.331
  • [38] P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975), doi: 10.1103/PhysRevB.12.905
  • [39] J. Bardeen, M. Stephen, Phys. Rev. 136, A1485 (1964), doi: 10.1103/PhysRev.136.A1485
  • [40] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Nature 525, 73 (2015), doi: 10.1038/nature14964
  • [41] A.P. Durajski, R. Szczęśniak, Y. Li, Physica C Supercond. Appl. 515, 1 (2015), doi: 10.1016/j.physc.2015.04.005
  • [42] D. Duan, X. Huang, F. Tian, D. Li, H. Yu, Y. Liu, Y. Ma, B. Liu, T. Cui, Phys. Rev. B 91, 180502(R) (2015), doi: 10.1103/PhysRevB.91.180502
  • [43] A.P. Durajski, R. Szczęśniak, L. Pietronero, Ann. Phys. 258, 358 (2016), doi: 10.1002/andp.201500316
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n234kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.