Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 637-640

Article title

Role of Bandwidths and Energy Gap in Formation of Ground State of Ultra-Cold Bosons in Artificial Magnetic Fields

Content

Title variants

Languages of publication

EN

Abstracts

EN
We study the properties of ultra-cold bosons in optical lattice in arbitrary gauge potentials. Using quantum rotor approach we are able to go beyond mean-field approximation thus taking into account subtleties of the band structure of the artificial magnetic field. This allows us to elucidate the interplay of the subbands widths and energy gaps on the formation of the coherent state. As a result, we are able to pinpoint the elements of the band structure, which are crucial to proper theoretical description of the synthetic magnetic field in a lattice bosonic system. This leads us finally to a method of approximation of the Hofstadter butterfly spectrum with a simpler band structure and use it to investigate the ground state of the system for a wide range of magnetic fluxes.

Keywords

EN

Contributors

author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland

References

  • [1] D. Pesin, L. Balents, Nat. Phys. 6, 376 (2010), doi: 10.1038/nphys1606
  • [2] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008), doi: 10.1103/revmodphys.80.885
  • [3] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002), doi: 10.1038/415039a
  • [4] D. Jaksch, P. Zoller, New J. Phys. 5, 56.1 (2003), doi: 10.1088/1367-2630/5/1/356
  • [5] A.R. Kolovsky, EPL 93, 20003 (2011), doi: 10.1209/0295-5075/93/20003
  • [6] M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013), doi: 10.1103/physrevlett.111.185301
  • [7] H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013), doi: 10.1103/physrevlett.111.185302
  • [8] C.J. Kennedy, W.C. Burton, W.C. Chung, W. Ketterle, Nat. Phys. 11, 859 (2015), doi: 10.1038/nphys3421
  • [9] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013), doi: 10.1038/nphys2750
  • [10] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014), doi: 10.1038/nature13915
  • [11] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976), doi: 10.1103/physrevb.14.2239
  • [12] T.K. Kopeć, Phys. Rev. B 70, 054518 (2004), doi: 10.1103/physrevb.70.054518
  • [13] T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007), doi: 10.1103/physrevb.76.094503
  • [14] T. Zaleski, T. Kopeć, Phys. Rev. A 84, 053613 (2011), doi: 10.1103/physreva.84.053613
  • [15] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989), doi: 10.1103/physrevb.40.546
  • [16] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998), doi: 10.1103/physrevlett.81.3108
  • [17] P.G. Harper, Proc. Phys. Soc. A 68, 874 (1955), doi: 10.1088/0370-1298/68/10/304

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n231kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.