Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We study the properties of ultra-cold bosons in optical lattice in arbitrary gauge potentials. Using quantum rotor approach we are able to go beyond mean-field approximation thus taking into account subtleties of the band structure of the artificial magnetic field. This allows us to elucidate the interplay of the subbands widths and energy gaps on the formation of the coherent state. As a result, we are able to pinpoint the elements of the band structure, which are crucial to proper theoretical description of the synthetic magnetic field in a lattice bosonic system. This leads us finally to a method of approximation of the Hofstadter butterfly spectrum with a simpler band structure and use it to investigate the ground state of the system for a wide range of magnetic fluxes.
Discipline
- 03.75.Lm: Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations(see also 74.50.+r Tunneling phenomena; Josephson effects in superconductivity)
- 67.85.Hj: Bose-Einstein condensates in optical potentials
- 05.30.Jp: Boson systems(for static and dynamic properties of Bose-Einstein condensates, see 03.75.Hh and 03.75.Kk; see also 67.10.Ba Boson degeneracy in quantum fluids)
Journal
Year
Volume
Issue
Pages
637-640
Physical description
Dates
published
2016-08
Contributors
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
References
- [1] D. Pesin, L. Balents, Nat. Phys. 6, 376 (2010), doi: 10.1038/nphys1606
- [2] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008), doi: 10.1103/revmodphys.80.885
- [3] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002), doi: 10.1038/415039a
- [4] D. Jaksch, P. Zoller, New J. Phys. 5, 56.1 (2003), doi: 10.1088/1367-2630/5/1/356
- [5] A.R. Kolovsky, EPL 93, 20003 (2011), doi: 10.1209/0295-5075/93/20003
- [6] M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013), doi: 10.1103/physrevlett.111.185301
- [7] H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Phys. Rev. Lett. 111, 185302 (2013), doi: 10.1103/physrevlett.111.185302
- [8] C.J. Kennedy, W.C. Burton, W.C. Chung, W. Ketterle, Nat. Phys. 11, 859 (2015), doi: 10.1038/nphys3421
- [9] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013), doi: 10.1038/nphys2750
- [10] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger, Nature 515, 237 (2014), doi: 10.1038/nature13915
- [11] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976), doi: 10.1103/physrevb.14.2239
- [12] T.K. Kopeć, Phys. Rev. B 70, 054518 (2004), doi: 10.1103/physrevb.70.054518
- [13] T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007), doi: 10.1103/physrevb.76.094503
- [14] T. Zaleski, T. Kopeć, Phys. Rev. A 84, 053613 (2011), doi: 10.1103/physreva.84.053613
- [15] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989), doi: 10.1103/physrevb.40.546
- [16] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998), doi: 10.1103/physrevlett.81.3108
- [17] P.G. Harper, Proc. Phys. Soc. A 68, 874 (1955), doi: 10.1088/0370-1298/68/10/304
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n231kz