Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We study ultra-cold bosonic systems in optical lattice using quantum rotor approach to calculate the current-current correlations, which provides the information about conductivity of the system. The method allows us to go beyond mean-field approximation and track the behavior of the real part of the conductivity along the phase transition between the Mott insulator and superfluid state for various geometries of the lattice. In the phase-ordered state at zero temperature, a discrete ingredient appears resulting from the long-range coherence in the system.
Discipline
- 03.75.Lm: Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations(see also 74.50.+r Tunneling phenomena; Josephson effects in superconductivity)
- 67.85.Hj: Bose-Einstein condensates in optical potentials
- 05.30.Jp: Boson systems(for static and dynamic properties of Bose-Einstein condensates, see 03.75.Hh and 03.75.Kk; see also 67.10.Ba Boson degeneracy in quantum fluids)
Journal
Year
Volume
Issue
Pages
633-636
Physical description
Dates
published
2016-08
Contributors
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław, Poland
References
- [1] J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957), doi: 10.1103/PhysRev.108.1175
- [2] K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980), doi: 10.1103/PhysRevLett.45.494
- [3] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008), doi: 10.1103/RevModPhys.80.885
- [4] C. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, Cambridge University Press, 2002
- [5] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, T. Esslinger, Nature 517, 64 (2015), doi: 10.1038/nature14049
- [6] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998), doi: 10.1103/physrevlett.81.3108
- [7] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989), doi: 10.1103/physrevb.40.546
- [8] T.K. Kopeć, J.V. José, Phys. Rev. B 60, 7473 (1999), doi: 10.1103/physrevb.60.7473
- [9] T.K. Kopeć, Phys. Rev. B 70, 054518 (2004), doi: 10.1103/physrevb.70.054518
- [10] T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007), doi: 10.1103/physrevb.76.094503
- [11] T. Zaleski, T. Kopeć, Phys. Rev. A 84, 053613 (2011), doi: 10.1103/physreva.84.053613
- [12] T.A. Zaleski, Phys. Rev. A 85, 043611 (2012), doi: 10.1103/physreva.85.043611
- [13] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976), doi: 10.1103/physrevb.14.2239
- [14] A.P. Kampf, G.T. Zimanyi, Phys. Rev. B 47, 279 (1993), doi: 10.1103/physrevb.47.279
- [15] M.-C. Cha, M.P.A. Fisher, S.M. Girvin, M. Wallin, A.P. Young, Phys. Rev. B 44, 6883 (1991), doi: 10.1103/physrevb.44.6883
- [16] J. Wu, P. Phillips, Phys. Rev. B 73, 214507 (2006), doi: 10.1103/physrevb.73.214507
- [17] A.S. Sajna, T.P. Polak, R. Micnas, Phys. Rev. A 89, 023631 (2014), doi: 10.1103/physreva.89.023631
- [18] A. van Otterlo, K.H. Wagenblast, R. Fazio, G. Schön, Phys. Rev. B 48, 3316 (1993), doi: 10.1103/physrevb.48.3316
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n230kz