Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 621-624

Article title

Two-Band Model for Coherent Excitonic Condensates

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
We consider the excitonic correlations in the two-band solid state system composed of the valence band and conduction band electrons. We treat the phase coherence mechanism in the system by presenting the electron operator as a fermion attached to the U(1) phase-flux tube. The emergent bosonic gauge field, related to the phase variables appears to be crucial for the coherent Bose-Einstein condensation of excitons. We calculate the normal excitonic Green functions, and the single-particle density of states functions being a convolution between bosonic and fermionic counterparts. We obtain the total density of states as a sum of two independent parts. For the coherent normal fermionic density of states, there is no hybridization-gap found in the system due to strong coherence effects and phase stiffness.

Keywords

Contributors

author
  • Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
author
  • Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland

References

  • [1] L.V. Keldysh, A.N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968) http://jetp.ac.ru/cgi-bin/dn/e_027_03_0521
  • [2] L.V. Keldysh, Yu.V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965) http://www.jetp.ac.ru/cgi-bin/dn/e_027_03_0521
  • [3] S.A. Moskalenko, D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons, Cambridge University Press, Cambridge, U.K. 2000
  • [4] D.W. Snoke, Phys. Status Solidi B 238, 389 (2003), doi: 10.1002/pssb.200303151
  • [5] J.L. Lin, J.P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993), doi: 10.1103/PhysRevLett.71.1222
  • [6] D.W. Snoke, J.P. Wolfe, A. Mysyrowicz, Phys. Rev. Lett. 64, 2543 (1990), doi: 10.1103/PhysRevLett.64.2543
  • [6a] D.W. Snoke, J.P. Wolfe, A. Mysyrowicz, Phys. Rev. B 41, 11171 (1990), doi: 10.1103/PhysRevB.41.11171
  • [7] P.P. Vasil'ev, Phys. Status Solidi B 241, 1251 (2004), doi: 10.1002/pssb.200301989
  • [8] M. Kuwata-Gonokami, R. Shimano, A. Mysyrowicz, J. Phys. Soc. Jpn. 71, 1257 (2002), doi: 10.1143/JPSJ.71.1257
  • [9] Y. Tomio, K. Honda, T. Ogawa, Phys. Rev. B 73, 235108 (2006), doi: 10.1103/PhysRevB.73.235108
  • [10] D. Ihle, M. Pfafferott, E. Burovski, F.X. Bronold, H. Fehske, Phys. Rev. B 78, 193103 (2008), doi: 10.1103/PhysRevB.78.193103
  • [11] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 81, 115122 (2010), doi: 10.1103/PhysRevB.81.115122
  • [12] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 83, 235123 (2011), doi: 10.1103/PhysRevB.83.235123
  • [13] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 85, 121102 (2012), doi: 10.1103/PhysRevB.85.121102
  • [14] K. Seki, R. Eder, Y. Ohta, Phys. Rev. B 84, 245106 (2011), doi: 10.1103/PhysRevB.84.245106
  • [15] D.W. Snoke, Adv. Condens. Matter Phys. 2011, 938609 (2011), doi: 10.1155/2011/938609
  • [16] D. Snoke, Science 298, 1368 (2002), doi: 10.1126/science.1078082
  • [17] D.I. Golosov, Phys. Rev. B 86, 155134 (2012), doi: 10.1103/PhysRevB.86.155134
  • [18] L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969), doi: 10.1103/PhysRevLett.22.997
  • [19] Yu. Kagan, V.A. Kashurnikov, A.V. Krasavin, N.V. Prokof'ev, B.V. Svistunov, Phys. Rev. A 61, 043608 (2000), doi: 10.1103/PhysRevA.61.043608
  • [20] P. Gonnet, ACM Trans. Math. Softw. 37, 26 (2010), doi: 10.1145/1824801.1824804

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n227kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.