Title variants
Languages of publication
Abstracts
We consider the excitonic correlations in the two-band solid state system composed of the valence band and conduction band electrons. We treat the phase coherence mechanism in the system by presenting the electron operator as a fermion attached to the U(1) phase-flux tube. The emergent bosonic gauge field, related to the phase variables appears to be crucial for the coherent Bose-Einstein condensation of excitons. We calculate the normal excitonic Green functions, and the single-particle density of states functions being a convolution between bosonic and fermionic counterparts. We obtain the total density of states as a sum of two independent parts. For the coherent normal fermionic density of states, there is no hybridization-gap found in the system due to strong coherence effects and phase stiffness.
Discipline
- 71.10.Fd: Lattice fermion models (Hubbard model, etc.)
- 71.10.Hf: Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model systems
- 71.35.-y: Excitons and related phenomena
- 71.28.+d: Narrow-band systems; intermediate-valence solids(for magnetic aspects, see 75.20.Hr and 75.30.Mb in magnetic properties and materials)
Journal
Year
Volume
Issue
Pages
621-624
Physical description
Dates
published
2016-08
Contributors
author
- Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
author
- Institute for Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2, Poland
References
- [1] L.V. Keldysh, A.N. Kozlov, Zh. Eksp. Teor. Fiz. 54, 978 (1968) http://jetp.ac.ru/cgi-bin/dn/e_027_03_0521
- [2] L.V. Keldysh, Yu.V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965) http://www.jetp.ac.ru/cgi-bin/dn/e_027_03_0521
- [3] S.A. Moskalenko, D.W. Snoke, Bose-Einstein Condensation of Excitons and Biexcitons, Cambridge University Press, Cambridge, U.K. 2000
- [4] D.W. Snoke, Phys. Status Solidi B 238, 389 (2003), doi: 10.1002/pssb.200303151
- [5] J.L. Lin, J.P. Wolfe, Phys. Rev. Lett. 71, 1222 (1993), doi: 10.1103/PhysRevLett.71.1222
- [6] D.W. Snoke, J.P. Wolfe, A. Mysyrowicz, Phys. Rev. Lett. 64, 2543 (1990), doi: 10.1103/PhysRevLett.64.2543
- [6a] D.W. Snoke, J.P. Wolfe, A. Mysyrowicz, Phys. Rev. B 41, 11171 (1990), doi: 10.1103/PhysRevB.41.11171
- [7] P.P. Vasil'ev, Phys. Status Solidi B 241, 1251 (2004), doi: 10.1002/pssb.200301989
- [8] M. Kuwata-Gonokami, R. Shimano, A. Mysyrowicz, J. Phys. Soc. Jpn. 71, 1257 (2002), doi: 10.1143/JPSJ.71.1257
- [9] Y. Tomio, K. Honda, T. Ogawa, Phys. Rev. B 73, 235108 (2006), doi: 10.1103/PhysRevB.73.235108
- [10] D. Ihle, M. Pfafferott, E. Burovski, F.X. Bronold, H. Fehske, Phys. Rev. B 78, 193103 (2008), doi: 10.1103/PhysRevB.78.193103
- [11] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 81, 115122 (2010), doi: 10.1103/PhysRevB.81.115122
- [12] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 83, 235123 (2011), doi: 10.1103/PhysRevB.83.235123
- [13] B. Zenker, D. Ihle, F.X. Bronold, H. Fehske, Phys. Rev. B 85, 121102 (2012), doi: 10.1103/PhysRevB.85.121102
- [14] K. Seki, R. Eder, Y. Ohta, Phys. Rev. B 84, 245106 (2011), doi: 10.1103/PhysRevB.84.245106
- [15] D.W. Snoke, Adv. Condens. Matter Phys. 2011, 938609 (2011), doi: 10.1155/2011/938609
- [16] D. Snoke, Science 298, 1368 (2002), doi: 10.1126/science.1078082
- [17] D.I. Golosov, Phys. Rev. B 86, 155134 (2012), doi: 10.1103/PhysRevB.86.155134
- [18] L.M. Falicov, J.C. Kimball, Phys. Rev. Lett. 22, 997 (1969), doi: 10.1103/PhysRevLett.22.997
- [19] Yu. Kagan, V.A. Kashurnikov, A.V. Krasavin, N.V. Prokof'ev, B.V. Svistunov, Phys. Rev. A 61, 043608 (2000), doi: 10.1103/PhysRevA.61.043608
- [20] P. Gonnet, ACM Trans. Math. Softw. 37, 26 (2010), doi: 10.1145/1824801.1824804
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n227kz