Title variants
Languages of publication
Abstracts
Nonequilibrium dynamics of non-interacting bosons in a one-dimensional ring-shaped lattice is studied by means of the kinetic Monte Carlo method. The system is approximated by the classical XY model (the kinetic term is neglected) and then the simulations are performed for the planar classical spins. We study the dynamics that follows a finite-time quench to zero temperature. If the quench is slow enough the system can equilibrate and finally reaches the ground state with uniform spin alignment. However, we show that if the quench is faster than the relaxation rate, the system can get locked in a current-carrying metastable state characterized by a nonzero winding number. We analyze how the zero-temperature state depends on the quench rate.
Discipline
- 03.75.Kk: Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow
- 03.75.Lm: Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations(see also 74.50.+r Tunneling phenomena; Josephson effects in superconductivity)
- 64.60.Ht: Dynamic critical phenomena(for quantum critical phenomena in superconductivity, see 74.40.Kb)
Journal
Year
Volume
Issue
Pages
569-572
Physical description
Dates
published
2016-08
Contributors
author
- Department of Theoretical Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
author
- Department of Theoretical Physics, Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
References
- [1] D. Wohlleben, M. Esser, P. Freche, E. Zipper, M. Szopa, Phys. Rev. Lett. 66, 3191 (1991), doi: 10.1103/PhysRevLett.66.3191
- [1a] M. Rasolt, F. Perrot, Phys. Rev. Lett. 69, 2563 (1992), doi: 10.1103/PhysRevLett.69.2563
- [1b] M.Y. Choi, Phys. Rev. Lett. 71, 2987 (1993), doi: 10.1103/PhysRevLett.71.2987
- [2] S.V. Sharov, A.D. Zaikin, Physica E 29, 360 (2005), doi: 10.1016/j.physe.2005.05.034
- [3] A.V. Parafilo, I.V. Krive, E.N. Bogachek, U. Landman, R.I. Shekhter, M. Jonson, Phys. Rev. B 83, 045427 (2011), doi: 10.1103/PhysRevB.83.045427
- [4] M.D. Girardeau, E.M. Wright, Phys. Rev. Lett. 100, 200403 (2008), doi: 10.1103/PhysRevLett.100.200403
- [5] L.N. Bulaevskii, A.A. Sobyanin, V.V. Kuzii, Zh. Eksper. Teor. Fiz. 25, 314 (1977)
- [6] S.M. Frolov, M.J.A. Stoutimore, T.A. Crane, D.J. Van Harlingen, V.A. Oboznov, V.V. Ryazanov, A. Ruosi, C. Granata, M. Russo, Nat. Phys. 4, 32 (2008), doi: 10.1038/nphys780
- [7] T. Kashimura, S. Tsuchiya, Y. Ohashi, Phys. Rev. A 84, 013609 (2011), doi: 10.1103/PhysRevA.84.013609
- [8] T.W.B. Kibble, J. Phys. A Math. Gen. 9, 1387 (1976), doi: 10.1088/0305-4470/9/8/029
- [8a] T.W.B. Kibble, Phys. Rep. 67, 183 (1980), doi: 10.1016/0370-1573(80)90091-5
- [9] W.H. Żurek, Nature 317, 505 (1985), doi: 10.1038/317505a0
- [10] I. Chuang, R. Durrer, N. Turok, B. Yurke, Science 251, 1336 (1991), doi: 10.1126/science.251.4999.1336
- [11] C. Büerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, G.R. Pickett, Nature 382, 332 (1996), doi: 10.1038/382332a0
- [12] V.M.H. Ruutu, V.B. Eltsov, A.J. Gill, T.W.B. Kibble, M. Krusius, Yu.G. Makhlin, B. Plaçais, G.E. Volovik, Wen Xu, Nature 382, 334 (1996), doi: 10.1038/382334a0
- [13] A. Maniv, E. Polturak, G. Koren, Phys. Rev. Lett. 91, 197001 (2003), doi: 10.1103/PhysRevLett.91.197001
- [14] J.R. Kirtley, C.C. Tsuei, F. Tafuri, Phys. Rev. Lett. 90, 257001 (2003), doi: 10.1103/PhysRevLett.90.257001
- [15] R. Monaco, M. Aaroe, J. Mygind, R.J. Rivers, V.P. Koshelets, Phys. Rev. B 74, 144513 (2006), doi: 10.1103/PhysRevB.74.144513
- [16] L. Mathey, A. Polkovnikov, A.H. Castro Neto, Europhys. Lett. 81, 10008 (2008), doi: 10.1209/0295-5075/81/10008
- [16a] L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Nature 443, 312 (2006), doi: 10.1038/nature05094
- [16b] D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, Phys. Rev. Lett. 98, 110402 (2007), doi: 10.1103/PhysRevLett.98.110402
- [17] M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011), doi: 10.1103/RevModPhys.83.1405
- [18] D.R. Scherer, C.N. Weiler, T.W. Neely, B.P. Anderson, Phys. Rev. Lett. 98, 110402 (2007), doi: 10.1103/PhysRevLett.98.110402
- [18a] K. Henderson, C. Ryu, C. MacCormick, M.G. Boshier, New J. Phys. 11, 043030 (2009), doi: 10.1088/1367-2630/11/4/043030
- [19] R. Monaco, J. Mygind, R.J. Rivers, V.P. Koshelets, Phys. Rev. B 80, 180501(R) (2009), doi: 10.1103/PhysRevB.80.180501
- [20] A.B. Bortz, M.H. Kalos, J.L. Lebowitz, J. Comput. Phys. 17, 10 (1975), doi: 10.1016/0021-9991(75)90060-1
- [21] A. Das, J. Sabbatini, W.H. Żurek, Sci. Rep. 2, 352 (2012), doi: 10.1038/srep00352
- [21a] J. Dziarmaga, J. Meisner, W.H. Żurek, Phys. Rev. Lett. 101, 115701 (2008), doi: 10.1103/PhysRevLett.101.115701
- [21b] J. Dziarmaga, M. Tylutki, W.H. Żurek, Phys. Rev. B 84, 094528 (2011), doi: 10.1103/PhysRevB.84.094528
- [22] L. Amico, D. Aghamalyan, F. Auksztol, H. Crepaz, R. Dumke, L.C. Kwek, Sci. Rep. 4, 4298 (2014), doi: 10.1038/srep04298
- [22a] M. Sakamoto, K. Oka, R. Morita, N. Murakami, Opt. Lett. 38, 3661 (2013), doi: 10.1364/OL.38.003661
- [22b] A.R. Kolovsky, New J. Phys. 8, 197 (2006), doi: 10.1088/1367-2630/8/9/197
- [23] M.Y. Choi, Phys. Rev. B 48, 15920 (1993), doi: 10.1103/PhysRevB.48.15920
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n213kz