Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 564-568

Article title

Dynamic Structure Factor of Ultracold Bosons in Optical Lattice

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Ultracold atoms in optical lattices have been intensively investigated in recent years as they provide a very well controllable environment for observation of many-body quantum phenomena, closely mimicking physics of strongly interacting electronic systems. Here, we use the quantum rotor approach supplemented by the Bogolyubov method to investigate one- and two-particle excitations, which are a measure of inter-particle correlations. We calculate one-particle spectral function and dynamic structure factor, which can be observed using spectroscopy of cold atomic systems. Our calculations require a significant numerical effort to determine multidimensional convolutions of momentum and frequency dependent constituents functions, which we achieve using parallelised fast Fourier transform. We observe the appearance of sharp coherence peaks in the superfluid phase of the cold bosons, which closely resembles the formation of sharply defined quasiparticle excitations below T_{c} in cuprates or smeared excitation spectra characteristic for strongly interacting systems.

Keywords

EN

Contributors

author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
  • Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland

References

  • [1] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008), doi: 10.1103/RevModPhys.80.885
  • [2] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002), doi: 10.1038/415039a
  • [3] M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013), doi: 10.1103/PhysRevLett.111.185301
  • [4] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013), doi: 10.1038/nphys2750
  • [5] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, T. Esslinger, Nature 517, 64 (2015), doi: 10.1038/nature14049
  • [6] W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 77 (2009), doi: 10.1038/nature08482
  • [7] J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010), doi: 10.1038/nature09378
  • [8] G.K. Campbell, J. Mun, M. Boyd, P. Medley, A.E. Leanhardt, L.G. Marcassa, D.E. Pritchard, W. Ketterle, Science 313, 649 (2006), doi: 10.1126/science.1130365
  • [9] J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008), doi: 10.1038/nature07172
  • [10] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, I. Carusotto, Phys. Rev. Lett. 98, 240402 (2007), doi: 10.1103/PhysRevLett.98.240402
  • [11] J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999), doi: 10.1103/PhysRevLett.82.4569
  • [12] A.M. Ray, P.B. Blakie, G. Pupillo, C.J. Williams, C.W. Clark, Phys. Rev. A 72, 023407 (2005), doi: 10.1103/PhysRevA.72.023407
  • [13] D. Clément, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, J. Low. Temp. Phys. 158, 5 (2010), doi: 10.1007/s10909-009-0040-7
  • [14] P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2009), doi: 10.1038/nphys1476
  • [15] P. Pippan, H.G. Evertz, M. Hohenadler, Phys. Rev. A 80, 033612 (2009), doi: 10.1103/PhysRevA.80.033612
  • [16] V.N. Golovach, A. Minguzzi, L.I. Glazman, Phys. Rev. A 80, 043611 (2009), doi: 10.1103/PhysRevA.80.043611
  • [17] G. Pupillo, A.M. Rey, G.G. Batrouni, Phys. Rev. A 74, 013601 (2006), doi: 10.1103/PhysRevA.74.013601
  • [18] S. Ejima, H. Fehske, F. Gebhard, K. zu Münster, M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. A 85, 053644 (2012), doi: 10.1103/PhysRevA.85.053644
  • [19] G. Roux, A. Minguzzi, T. Roscilde, New J. Phys. 15, 055003 (2013), doi: 10.1088/1367-2630/15/5/055003
  • [20] T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007), doi: 10.1103/PhysRevB.76.094503
  • [21] A. Brynello, D. Dalfovo, L. Pitaevskii, S. Stringari, F. Zambelli, Phys. Rev. A 64, 063614 (2001), doi: 10.1103/PhysRevA.64.063614
  • [22] D. Pines, P. Nozieres, The Theory of Quantum Liquids, Vol. I, Benjamin, New York 1966
  • [23] A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, San Francisco 1971
  • [24] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989), doi: 10.1103/PhysRevB.40.546
  • [25] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998), doi: 10.1103/PhysRevLett.81.3108
  • [26] S. Florens, A. Georges, Phys. Rev. B 66, 165111 (2002), doi: 10.1103/PhysRevB.66.165111
  • [27] T.A. Zaleski, T.K. Kopeć, Phys. Rev. A 84, 053613 (2011), doi: 10.1103/PhysRevA.84.053613
  • [28] C. Lannert, M.P.A. Fisher, T. Senthil, Phys. Rev. B 64, 014518 (2001), doi: 10.1103/PhysRevB.64.014518
  • [29] C. Menotti, N. Trivedi, Phys. Rev. B 77, 235120 (2008), doi: 10.1103/PhysRevB.77.235120
  • [30] T.A. Zaleski, Phys. Rev. A 85, 043611 (2012), doi: 10.1103/PhysRevA.85.043611
  • [31] T.A. Zaleski, T.K. Kopeć, Physica B 433, 37 (2014), doi: 10.1016/j.physb.2013.10.006

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n212kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.