Title variants
Languages of publication
Abstracts
Ultracold atoms in optical lattices have been intensively investigated in recent years as they provide a very well controllable environment for observation of many-body quantum phenomena, closely mimicking physics of strongly interacting electronic systems. Here, we use the quantum rotor approach supplemented by the Bogolyubov method to investigate one- and two-particle excitations, which are a measure of inter-particle correlations. We calculate one-particle spectral function and dynamic structure factor, which can be observed using spectroscopy of cold atomic systems. Our calculations require a significant numerical effort to determine multidimensional convolutions of momentum and frequency dependent constituents functions, which we achieve using parallelised fast Fourier transform. We observe the appearance of sharp coherence peaks in the superfluid phase of the cold bosons, which closely resembles the formation of sharply defined quasiparticle excitations below T_{c} in cuprates or smeared excitation spectra characteristic for strongly interacting systems.
Discipline
- 67.85.Hj: Bose-Einstein condensates in optical potentials
- 05.30.Jp: Boson systems(for static and dynamic properties of Bose-Einstein condensates, see 03.75.Hh and 03.75.Kk; see also 67.10.Ba Boson degeneracy in quantum fluids)
- 03.75.Hh: Static properties of condensates; thermodynamical, statistical, and structural properties
Journal
Year
Volume
Issue
Pages
564-568
Physical description
Dates
published
2016-08
Contributors
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
author
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
References
- [1] I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008), doi: 10.1103/RevModPhys.80.885
- [2] M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002), doi: 10.1038/415039a
- [3] M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013), doi: 10.1103/PhysRevLett.111.185301
- [4] J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Nat. Phys. 9, 738 (2013), doi: 10.1038/nphys2750
- [5] S. Krinner, D. Stadler, D. Husmann, J.-P. Brantut, T. Esslinger, Nature 517, 64 (2015), doi: 10.1038/nature14049
- [6] W.S. Bakr, J.I. Gillen, A. Peng, S. Fölling, M. Greiner, Nature 462, 77 (2009), doi: 10.1038/nature08482
- [7] J.F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, S. Kuhr, Nature 467, 68 (2010), doi: 10.1038/nature09378
- [8] G.K. Campbell, J. Mun, M. Boyd, P. Medley, A.E. Leanhardt, L.G. Marcassa, D.E. Pritchard, W. Ketterle, Science 313, 649 (2006), doi: 10.1126/science.1130365
- [9] J.T. Stewart, J.P. Gaebler, D.S. Jin, Nature 454, 744 (2008), doi: 10.1038/nature07172
- [10] T.-L. Dao, A. Georges, J. Dalibard, C. Salomon, I. Carusotto, Phys. Rev. Lett. 98, 240402 (2007), doi: 10.1103/PhysRevLett.98.240402
- [11] J. Stenger, S. Inouye, A.P. Chikkatur, D.M. Stamper-Kurn, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999), doi: 10.1103/PhysRevLett.82.4569
- [12] A.M. Ray, P.B. Blakie, G. Pupillo, C.J. Williams, C.W. Clark, Phys. Rev. A 72, 023407 (2005), doi: 10.1103/PhysRevA.72.023407
- [13] D. Clément, N. Fabbri, L. Fallani, C. Fort, M. Inguscio, J. Low. Temp. Phys. 158, 5 (2010), doi: 10.1007/s10909-009-0040-7
- [14] P.T. Ernst, S. Götze, J.S. Krauser, K. Pyka, D.-S. Lühmann, D. Pfannkuche, K. Sengstock, Nat. Phys. 6, 56 (2009), doi: 10.1038/nphys1476
- [15] P. Pippan, H.G. Evertz, M. Hohenadler, Phys. Rev. A 80, 033612 (2009), doi: 10.1103/PhysRevA.80.033612
- [16] V.N. Golovach, A. Minguzzi, L.I. Glazman, Phys. Rev. A 80, 043611 (2009), doi: 10.1103/PhysRevA.80.043611
- [17] G. Pupillo, A.M. Rey, G.G. Batrouni, Phys. Rev. A 74, 013601 (2006), doi: 10.1103/PhysRevA.74.013601
- [18] S. Ejima, H. Fehske, F. Gebhard, K. zu Münster, M. Knap, E. Arrigoni, W. von der Linden, Phys. Rev. A 85, 053644 (2012), doi: 10.1103/PhysRevA.85.053644
- [19] G. Roux, A. Minguzzi, T. Roscilde, New J. Phys. 15, 055003 (2013), doi: 10.1088/1367-2630/15/5/055003
- [20] T.P. Polak, T.K. Kopeć, Phys. Rev. B 76, 094503 (2007), doi: 10.1103/PhysRevB.76.094503
- [21] A. Brynello, D. Dalfovo, L. Pitaevskii, S. Stringari, F. Zambelli, Phys. Rev. A 64, 063614 (2001), doi: 10.1103/PhysRevA.64.063614
- [22] D. Pines, P. Nozieres, The Theory of Quantum Liquids, Vol. I, Benjamin, New York 1966
- [23] A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, San Francisco 1971
- [24] M.P.A. Fisher, P.B. Weichman, G. Grinstein, D.S. Fisher, Phys. Rev. B 40, 546 (1989), doi: 10.1103/PhysRevB.40.546
- [25] D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998), doi: 10.1103/PhysRevLett.81.3108
- [26] S. Florens, A. Georges, Phys. Rev. B 66, 165111 (2002), doi: 10.1103/PhysRevB.66.165111
- [27] T.A. Zaleski, T.K. Kopeć, Phys. Rev. A 84, 053613 (2011), doi: 10.1103/PhysRevA.84.053613
- [28] C. Lannert, M.P.A. Fisher, T. Senthil, Phys. Rev. B 64, 014518 (2001), doi: 10.1103/PhysRevB.64.014518
- [29] C. Menotti, N. Trivedi, Phys. Rev. B 77, 235120 (2008), doi: 10.1103/PhysRevB.77.235120
- [30] T.A. Zaleski, Phys. Rev. A 85, 043611 (2012), doi: 10.1103/PhysRevA.85.043611
- [31] T.A. Zaleski, T.K. Kopeć, Physica B 433, 37 (2014), doi: 10.1016/j.physb.2013.10.006
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n212kz