PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 558-563
Article title

Holographic Superconductivity in the Presence of Dark Matter: Basic Issues

Content
Title variants
Languages of publication
EN
Abstracts
EN
The holographic approach to study strongly coupled superconductors in the presence of dark matter is reviewed. We discuss the influence of dark matter on the superconducting transition temperature of both s-wave and p-wave holographic superconductors. The upper critical field, coherence length, penetration depth of holographic superconductors as well as the metal-insulator transitions have also been analysed. Issues related to the validity of anti-de Sitter/conformal field theory correspondence for the description of superconductors studied in the laboratory and possible experiments directed towards the detection of dark matter are discussed. In doing so we shall compare our assumptions and assertions with those generally accepted in the elementary particle experiments aimed at the detection of dark matter particles.
Keywords
EN
Contributors
author
  • Institute of Physics, Maria Curie-Skłodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
  • Institute of Physics, Maria Curie-Skłodowska University, Pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland
References
  • [1] M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York 2004
  • [2] P. Dirac, Proc. R. Soc. Lond. A 133, 60 (1931), doi: 10.1098/rspa.1931.0130
  • [3] B. Cabrera, Phys. Rev. Lett. 48, 1378 (1982), doi: 10.1103/PhysRevLett.48.1378
  • [4] S. Burdin, M. Fairbairn, P. Mermod, D. Milstead, J. Pinfold, T. Sloan, W. Taylor, Phys. Rep. 582, 1 (2015), doi: 10.1016/j.physrep.2015.03.004
  • [5] S. Courteau, M. Cappellari, R.S. de Jong, A.A. Dutton, E. Emsellem, H. Hoekstra, L.V.E. Koopmans, G.A. Mamon, C. Maraston, T. Treu, L.M. Widrow, Rev. Mod. Phys. 86, 47 (2014), doi: 10.1103/RevModPhys.86.47
  • [6] P.A.R. Ade et al. (BICEP2/Keck and Planck Collaborations), Phys. Rev. Lett. 114, 101301 (2015), doi: 10.1103/PhysRevLett.114.101301
  • [7] D. Hooper, S. Profumo, Phys. Rep. 453, 29 (2007), doi: 10.1016/j.physrep.2007.09.003
  • [8] Ch. Beck, Phys. Rev. Lett. 111, 231801 (2013), doi: 10.1103/PhysRevLett.111.231801
  • [9] F. Wilczek, New J. Phys. 16, 082003 (2014), doi: 10.1088/1367-2630/16/8/082003
  • [10] G. Bertone, D. Hooper, J. Silk, Phys. Rep. 405, 279 (2005), doi: 10.1016/j.physrep.2004.08.031
  • [11] J.M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999), doi: 10.1023/A:1026654312961
  • [12] S. Sachdev, Ann. Rev. Condens. Matter Phys. 3, 9 (2012), doi: 10.1146/annurev-conmatphys-020911-125141
  • [13] A.G. Green, Contemp. Phys. 54, 33 (2013), doi: 10.1080/00107514.2013.779477
  • [14] S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008), doi: 10.1103/PhysRevLett.101.031601
  • [15] Ł. Nakonieczny, M. Rogatko, Phys. Rev. D 90, 106004 (2014), doi: 10.1103/PhysRevD.90.106004
  • [16] Ł. Nakonieczny, M. Rogatko, K.I. Wysokiński, Phys. Rev. D 91, 046007 (2015), doi: 10.1103/PhysRevD.91.046007
  • [17] Ł. Nakonieczny, M. Rogatko, K.I. Wysokiński, Phys. Rev. D 92, 066008 (2015), doi: 10.1103/PhysRevD.92.066008
  • [18] M. Rogatko, K.I. Wysokiński, J. High Energy Phys. 12, 041 (2015), doi: 10.1007/JHEP12(2015)041
  • [19] M. Rogatko, K.I. Wysokiński, arXiv: 1508.02869 http://arXiv.org/abs/1508.02869
  • [20] R.A. Klemm, A. Luther, M.R. Beasley, Phys. Rev. B 12, 877 (1975), doi: 10.1103/PhysRevB.12.877
  • [21] R. Gregory, S. Kanno, J. Soda, J. High Energy Phys. 10, 010 (2009), doi: 10.1088/1126-6708/2009/10/010
  • [21a] L. Barclay, R. Gregory, S. Kanno, P. Sutcliffe, J. High Energy Phys. 12, 029 (2010), doi: 10.1007/JHEP12(2010)029
  • [21b] S. Kanno, Class. Quantum Grav. 28, 127001 (2011), doi: 10.1088/0264-9381/28/12/127001
  • [22] J. Jing, Q. Pan, S. Chen, J. High Energy Phys. 11, 045 (2011), doi: 10.1007/JHEP11(2011)045
  • [22a] J. Jing, Q. Pan, B. Wang, Phys. Rev. D 84, 126020 (2011), doi: 10.1103/PhysRevD.84.126020
  • [22b] J. Jing, B. Wang, Q. Pan, S. Chen, ibid. 83, 066010 (2011), doi: 10.1103/PhysRevD.83.066010
  • [23] T. Nishioka, S. Ryu, T. Takayanagi, J. High Energy Phys. 03, 131 (2010), doi: 10.1007/JHEP03(2010)131
  • [24] R.G. Cai, L. Li, L.F. Li, R.Q. Yang, Sci. China-Phys. Mech. Astron. 58, 060401 (2015), doi: 10.1007/s11433-015-5676-5
  • [25] Y. Brihaye, B. Hartmann, Phys. Rev. D 83, 126008 (2011), doi: 10.1103/PhysRevD.81.126008
  • [26] Y. Kim, Y. Ko, S-J. Sin, Phys. Rev. D 80, 126017 (2009), doi: 10.1103/PhysRevD.80.126017
  • [27] R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990), doi: 10.1103/RevModPhys.62.113
  • [28] Yan Peng, Qiyuan Pan, Yunqi Liu, arXiv: 1512.08950 http://arXiv.org/abs/1512.08950
  • [29] E. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004), doi: 10.1016/j.ppnp.2004.02.025
  • [30] P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005), doi: 10.1103/PhysRevLett.94.111601
  • [31] J.-H. She, B.J. Overbosch, Y.-W. Sun, Y. Liu, K.E. Schalm, J.A. Mydosh, J. Zaanen, Phys. Rev. B 84, 144527 (2011), doi: 10.1103/PhysRevB.84.144527
  • [32] R.A. Davison, B. Gouteraux, S.A. Hartnoll, J. High Energy Phys. 10, 112 (2015), doi: 10.1007/JHEP10(2015)112
  • [33] P.W. Anderson, Phys. Today 66, 9 (2013), doi: 10.1063/PT.3.1929
  • [34] K. Freese, M. Lisanti, Ch. Savage, Rev. Mod. Phys. 85, 1561 (2013), doi: 10.1103/RevModPhys.85.1561
  • [35] C.S. Frenk, S.D.M. White, Ann. Phys. (Berlin) 524, 507 (2012), doi: 10.1002/andp.201200212
  • [36] G. Jungman, M. Kamionkowski, K. Griest, Phys. Rep. 267, 195 (1996), doi: 10.1016/0370-1573(95)00058-5
  • [37] H. Davoudiasl, H.-S. Lee, W.J. Marciano, Phys. Rev. D 85, 115019 (2012), doi: 10.1103/PhysRevD.85.115019
  • [38] P. Ariasa, F.A. Schaposnik, J. High Energy Phys. 12, 011 (2014), doi: 10.1007/JHEP12(2014)011
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n211kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.