PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 2 | 554-557
Article title

Probing Fractional Josephson Junction with a Quantum Dot

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We consider theoretically a junction between two topological superconducting wires, mediated by a quantum dot. The wires are modelled by the Kitaev chains tuned into topological phase, which possess unpaired Majorana states at their ends. We derive the low energy Hamiltonian of the model. The Majorana states closer to the dot convert into the Dirac fermion inside the dot, forming fractional Josephson junction. The dot is additionally weakly coupled to the normal tunneling probe allowing transport measurement through the dot. When the topological wires are short, the unpaired Majorana end-states can hybridize inside the wire forming an extended Dirac fermionic state. It yields the destruction of the extended state in the dot. We discuss the dependence of the spectral density of the dot and its conductance on superconducting phase. We show that the conservation of parity of the junction, crucial for successful measurement of the fractional effect, can be assured by the gate voltage manipulation of the dot level position and that in case of an unpaired Majorana state in the junction a half conductance quantum can be observed.
Keywords
Contributors
author
  • Institute of Molecular Physics of the Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
References
  • [1] E. Majorana, Nuovo Cim. 14, 171 (1937), doi: 10.1007/bf02961314
  • [2] S. Das Sarma, M. Freedman, C. Nayak, NPJ Quant. Inform. 1, 15001 (2015), doi: 10.1038/npjqi.2015.1
  • [3] L. Fu, C.L. Kane, Phys. Rev. Lett. 100, 096407 (2008), doi: 10.1103/PhysRevLett.100.096407
  • [4] V. Mourik, K. Zuo, S.M. Vrolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012), doi: 10.1126/science.1222360
  • [5] M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012), doi: 10.1021/nl303758w
  • [6] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012), doi: 10.1038/nphys2479
  • [7] E.J.H. Lee, X. Jiang, R. Aguado, G. Katsaros, C.M. Lieber, S. De Franceschi, Phys. Rev. Lett. 109, 186802 (2012), doi: 10.1103/PhysRevLett.109.186802
  • [8] H.O.H. Churchill, V. Fatemi, K. Grove-Rasmussen, M.T. Deng, P. Caroff, H.Q. Xu, C.M. Marcus, Phys. Rev. B 87, 241401(R) (2013), doi: 10.1103/PhysRevB.87.241401
  • [9] L.P. Rokhinson, X. Liu, J.K. Furdyna, Nat. Phys. 8, 795 (2012), doi: 10.1038/NPHYS2429
  • [10] A.M. Zagoskin, Quantum Theory of Many-Body Systems, Springer-Verlag, New York 1998, doi: 10.1007/978-1-4612-0595-1
  • [11] H.-J. Kwon, K. Sengupta, V.M. Yakovenko, Eur. Phys. J. B 37, 349 (2004), doi: 10.1140/epjb/e2004-00066-4
  • [12] A.D.K. Finck, D.J. Van Harligen, P.K. Mohseni, K. Jung, X. Li, Phys. Rev. Lett. 110, 126406 (2013), doi: 10.1130/PhysRevLett.110.126406
  • [13] A. Kitaev, Phys. Usp. 44, 131 (2001), doi: 10.1070/1063-7869/44/10S/S29
  • [14] S. Nadj-Perge, I.J. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo, A.H. MacDonald, B.A. Bernevig, A. Jazdani, Science 346, 602 (2014), doi: 10.1126/science.1259327
  • [15] W. Chang, V.E. Manucharyan, T.S. Jespersen, J. Nygard, C.M. Marcus, Phys. Rev. Lett. 110, 217005 (2013), doi: 10.1103/PhysRevLett.110.217005
  • [16] D.E. Liu, H.U. Baranger, Phys Rev. B 84, 201308(R) (2011), doi: 10.1103/PhysRevB.84.201308
  • [17] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M.P.A. Fisher, Nat. Phys. 7, 412 (2011), doi: 10.1038/NPHYS1915
  • [18] Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992), doi: 10.1103/PhysRevLett.68.2512
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n210kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.