Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 397-400

Article title

Generalized Linear Models for European Union Countries Energy Data

Content

Title variants

Languages of publication

EN

Abstracts

EN
The class of generalized linear models is an extension of traditional linear models that allows the mean of the response variable to be linearly dependent on the explanatory variables through a link function. Generalized linear models allow the probability distribution of the response variable to be a member of an exponential family of distributions. The exponential family of distributions include many common discrete and continuous distributions such as normal, binomial, multinomial, negative binomial, Poisson, gamma, inverse Gaussian, etc. Also link functions can be built as identity, logit, probit, power, log, and complementary log-log link functions. In this study, supply, transformation and consumption, imports and exports of solid fuels, oil, gas, electricity, and renewable energy annual data of European Union countries between 2005 and 2013 years are investigated by using generalized linear models. In this case, the response variable is taken as annual complete energy balances of European Union countries as a continuous variable having positive values, and the distribution of the response variable comes from the gamma distribution with log-link function.

Keywords

EN

Contributors

author
  • Selcuk University, Faculty of Science, Department of Statistics, 42031, Alaeddin Keykubat Campus, Konya, Turkey
author
  • Selcuk University, Faculty of Science, Department of Statistics, 42031, Alaeddin Keykubat Campus, Konya, Turkey
author
  • Selcuk University, Faculty of Science, Department of Statistics, 42031, Alaeddin Keykubat Campus, Konya, Turkey

References

  • [1] J.A. Nelder, R.W.M. Wedderburn, J. Roy. Statist. Soc. Ser. A 135, 370 (1972), doi: 10.2307/2344614
  • [2] G. Johnston, SAS software to fit the generalized linear model, Sugi Papers 93-183, SAS Institute Inc., Cary, NC 1993 http://ats.ucla.edu/stat/sas/library/genmod.pdf
  • [3] K.Y. Liang, S.L. Zeger, Biometrika 73, 13 (1986), doi: 10.1093/biomet/73.1.13
  • [4] P. Diggle, P. Heagerty, K.Y. Liang, S. Zeger, Analysis of Longitudinal Data, 2nd ed., Oxford University Press, Oxford 2002 http://books.google.pl/books?hl=pl&lr=&id=JCwSDAAAQBAJ&oi=fnd&pg=PP1&dq=Analysis+of+Longitudinal+Data&ots=jT4bVEvsLM&sig=ZEruKAECjPYvFgkYClFw1UBAODY&redir_esc=y#v=onepage&q=Analysis%20of%20Longitudinal%20Data&f=false
  • [5] G.M. Fitzmaurice, N.M. Laird, J.H. Ware, Applied Longitudinal Data, 2nd ed., Wiley, Hoboken, NJ 2004
  • [6] R.W.M. Wedderburn, Biometrika 61, 439 (1974), doi: 10.1093/biomet/61.3.439
  • [7] J. Cui, Stata J. 7, 209 (2007) http://stata-journal.com/sjpdf.html?articlenum=st0126
  • [8] P. McCullagh, J.A. Nelder, Generalized Linear Models, Chapman and Hall, London 1989
  • [9] D. Firth, Generalized Linear Models, in: Statistical Theory and Modelling, Eds. D.V. Hinkley, N. Reid, E.J. Snell, Chapman and Hall, London 1991, p. 55 http://warwick.ac.uk/fac/sci/statistics/staff/academic-research/firth/cv-firth.pdf
  • [10] D.K. Blough, C.W. Madden, M.C. Hornbrook, J. Health Econ. 18, 153 (1999), doi: 10.1016/S0167-6296(98)00032-0
  • [11] J.K. Lindsey, Applying Generalized Linear Models, Springer Texts in Statistics, Springer-Verlag, New York 2000
  • [12] A.J. Dobson, A.G. Barnett, An Introduction to Generalized Linear Models, Chapman and Hall, Boca Raton 2008
  • [13] A. Agresti, Foundations of Linear and Generalized Linear Models, Wiley, NJ 2015
  • [14] J.W. Hardin, J.M. Hilbe, Generalized Estimating Equations, Chapman and Hall, Boca Raton, FL 2003
  • [15] S.H. Lipsitz, G.M. Fitzmaurice, E.J. Orav, N.M. Laird, Biometrics 50, 270 (1994), doi: 10.2307/2533218
  • [16] S.H. Lipsitz, K. Kim, L. Zhao, Statist. Med. 13, 1149 (1994), doi: 10.1002/sim.4780131106
  • [17] S.L. Zeger, K.Y. Liang, P.S. Albert, Biometrics 44, 1049 (1988), doi: 10.2307/2531734
  • [18] C.S. Davis, Statistical Methods for the Analysis of Repeated Measurements, Springer Texts in Statistics, Springer-Verlag, New York 2002
  • [19] G. Grover, A.S.A. Sabharwal, J. Mittal, Int. J. Statist. Med. Res. 2, 209 (2013) http://lifescienceglobal.com/pms/index.php/ijsmr/article/view/1206/pdf
  • [20] W. Pan, Biometrics 57, 120 (2001), doi: 10.1111/j.0006-341X.2001.00120.x
  • [21] H. Akaike, IEEE Trans. Automat. Control 19, 716 (1974) http://researchsupport.unt.edu/class/Jon/MiscDocs/Akaike_1974.pdf
  • [22] Eurostat Energy Database, 2015 http://ec.europa.eu/eurostat/web/energy/data/database
  • [23] IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY, IBM Corp, 2012 http://ibm.com/marketplace/cloud/statistical-analysis-and-reporting/us/en-us
  • [24] SAS Enterprise Guide 7.1, SAS, Cary, NC http://sas.com/en_us/software/enterprise-guide.html

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv130n1106kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.