Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 325-330
Article title

Frequency and Voltage-Dependent Dielectric Properties and AC Electrical Conductivity of (Au/Ti)/Al₂O₃/n-GaAs with Thin Al₂O₃ Interfacial Layer at Room Temperature

Title variants
Languages of publication
An (Au/Ti)/Al₂O₃/n-GaAs structure with thin (30 Å) interfacial oxide layer (Al₂O₃), formed by atomic layer deposition technique is fabricated to investigate both frequency and applied bias voltage dependences of real and imaginary parts of dielectric constant (ε' and ε'') and electric modulus (M' and M''), loss tangent tanδ and ac electrical conductivity σ_{AC} in a wide frequency range from 1000 Hz to 1 MHz at room temperature. The dielectric properties of the (Au/Ti)/Al₂O₃/n-GaAs metal-insulator-semiconductor structure are obtained using the forward and reverse bias capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements in the applied bias voltage range from -4 V to +4 V, at room temperature. Experimental results show that the dielectric parameters were strongly frequency and voltage dependent. For each frequency the (C-V) plots show a peak and the change in frequency has effect on both the intensity and position of the peak. ε', ε'' and tanδ decrease with increasing frequency, whereas σ_{AC} increases with increasing frequency at applied bias voltage. M' increases with the increasing frequency and reaches a maximum. M'' shows a peak and peak position shifts to higher frequency with increasing applied voltage. It can be concluded that the ε', ε'', tanδ, M', M'' and σ_{AC} values of the (Au/Ti)/Al₂O₃/ n-GaAs structure are strongly dependent on both the frequency and applied bias voltage especially in the depletion and accumulation region. Also, the results can be deduced to imply that the interfacial polarization is easier at low frequencies, therefore contributing to the deviation of dielectric properties and AC electrical conductivity of (Au/Ti)/Al₂O₃/n-GaAs structure.
Physical description
  • [1] A. Türüt, A. Karabulut, K. Ejderha, N. Bıyıklı, Mater. Res. Express 2, 046301 (2015), doi: 10.1088/2053-1591/2/4/046301
  • [2] A. Türüt, A. Karabulut, K. Ejderha, N. Bıyıklı, Mater. Sci. Semicond. Processing 39, 400 (2015), doi: 10.1016/j.mssp.2015.05.025
  • [3] D.E. Yıldız, M. Yıldırım, M. Gökçen, J. Vac. Sci. Tech. A 32, 031509 (2014), doi: 10.1116/1.4870593
  • [4] R.D. Long, P. McIntyre, Materials 5, 1297 (2012), doi: 10.3390/ma5071297
  • [5] H. Saghrouni, S. Jomni, W. Belgacem, N. Elghoul, L. Beji, Mater. Sci. Semicond. Process 29, 307 (2015), doi: 10.1016/j.mssp.2014.05.039
  • [6] C.P. Colinge, C.A. Colinge, Physics of Semiconductor Devices, Kluwer, Dordrecht 2002
  • [7] S. Dimitrijev, Principles of Semiconductor Devices, Oxford University Press, Oxford 2012
  • [8] A.F. Özdemir, S.G. Aydın, D.A. Aldemir, S.S. Gürsoy, Synth. Met. 161, 692 (2011), doi: 10.1016/j.synthmet.2011.01.016
  • [9] D.A. Neamen, Semiconductor Physics and Devices, Irwin, Boston 1992
  • [10] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., Clarendon, Oxford 1988
  • [11] A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S.A. Yerişkin, A. Aytimur, Ceram. Int. 42, 3322 (2016), doi: 10.1016/j.Ceramint.2015.10.126
  • [12] E.E. Tanrıkulu, D.E. Yıldız, A. Günen, Ş. Altındal, Phys. Scripta 90, 095801 (2015), doi: 10.1088/0031-8949/90/9/095801
  • [13] İ. Yücedağ, A. Kaya, Ş. Altındal, İ. Uslu, Chin. Phys. B 23, 047304 (2014), doi: 10.1088/1674-1056/23/4/047304
  • [14] P.B. Macedo, C.T. Moyniham, R. Bose, Phys. Chem. Glass 13, 171 (1972)
  • [15] S.M. Sze, Physics of Semiconductor Devices, 2nd ed., Willey & Sons, New York 1981
  • [16] E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology, 2nd ed., Wiley, New York 1982
  • [17] C.P. Symth, Dielectric Behaviour and Structure, 2nd ed., McGraw-Hill, New York 1955
  • [18] V.V. Daniel, Dielectric Relaxation, 2nd ed., Academic, London 1967
  • [19] M. Popescu, I. Bunget, Physics of Solid Dielectrics, 2nd ed., Elsevier, Amsterdam 1984
  • [20] A. Chelkowski, Dielectric Physics, 2nd ed., Elsevier, Amsterdam 1980
  • [21] B. Tataroğlu, Ş. Altındal, A. Tataroğlu, Microelectron. Eng. 83, 2021 (2006), doi: 10.1016/j.mee.2006.04.002
  • [22] A.A. Sattar, S.A. Rahman, Phys. Status Solidi A 200, 415 (2003), doi: 10.1002/pssa.200306663
  • [23] C. Fanggao, G.A. Saunders, E.F. Lampson, R.N. Hampton, G. Carini, G.D. Marco, M. Lanza, J. Polym. Sci. Pol. Phys. 34, 425, (1996)
  • [24] B. Barış, Physica B 438, 53 (2014), doi: 10.1016/j.physb.2014.01.006
  • [25] M. Le-Huu, H. Schmitt, S. Noll, M. Grieb, F.F. Schrey, A.J. Bauer, L. Frey, H. Ryssell, Microelectron. Reliab. 51, 1346 (2011), doi: 10.1016/j.microrel.2011.03.015
  • [26] S. Alialy, Ş. Altındal, E.E. Tanrıkulu, D.E. Yıldız, J. Appl. Phys. 116, 083709 (2014), doi: 10.1063/1.4893970
  • [27] Ö. Vural, Y. Şafak, A. Türüt, Ş. Altındal, J. Alloys Compd. 513, 107 (2012), doi: 10.1016/j.jallcom.2011.09.101
  • [28] D.E. Yıldız, Ş. Altındal,Z. Tekeli, M. Özer, Mater. Sci. Semicond. Process 13, 34 (2010), doi: 10.1016/j.mssp.2010.02.004
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.