PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 233-235
Article title

Evaluation of Multiple Backscattering and Saturation Thickness of Gamma Rays

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
A Monte Carlo code was written to determine the saturation thickness for multiply scattered gamma rays from aluminium targets. Interactions of incident gamma rays with the energies of 123, 279, 360, 511, 662, 1115, and 1250 keV were simulated. This work aims to design a convenient code which can be used in investigations on gamma backscattering. Obtained results for saturation thickness values have been compared with experimental ones and the Monte Carlo N-particle (MCNP) code results, and showed good agreement. Also, based on the similar behavior of number of multiple scattered photons between these three methods, the expected spectrum of singly or multiply scattered photons which is not possible to observe with experiment has been presented.
Keywords
Contributors
author
  • Uludag University, Physics Department, Bursa, Turkey
References
  • [1] A.D. Sabharwal, B.S. Sandhu, B. Singh, , Sect. 5 J. Phys. Conf. Series 312, 052021 (2011), doi: 10.1088/1742-6596/312/5/
  • [2] K.M. Eshwarappa, K.U. Kiran, K. Ravindraswami, H.M. Somashekarappa, Central Europ. J. Phys. 12, 792 (2014), doi: 10.2478/s11534-014-0516-1
  • [3] A.D. Sabharwal, B.S. Sandhu, B. Singh, Asian J. Chem. 21, 237 (2009)
  • [4] G. Singh, M. Singh, B.S. Sandhu, B. Singh, Indian J. Pure Appl. Phys. 45, 111 (2007) http://researchgate.net/journal/0019-5596_Indian_Journal_of_Pure_and_Applied_Physics
  • [5] M. Singh, B. Singh, B.S. Sandhu, Pramana J. Phys. 70, 61 (2008), doi: 10.1007/s12043-008-0005-4
  • [6] A.D. Sabharwal, M. Singh, B. Singh, B.S. Sandhu, Indian J. Phys. 83, 1141 (2009), doi: 10.1007/s12648-009-0093-0
  • [7] S.M.T. Hoang, S. Yoo, G.M. Sun, Nucl. Eng. Technol. 43, 13 (2011), doi: 10.5516/NET.2011.43.1.013
  • [8] A.B. Kadhim, A.N. Mohammad, Iraqi J. Sci. 54, 121 (2013)
  • [9] C. Udagani, Int. J. Eng. Sci. Invent. 2, 86 (2013)
  • [10] B.A. Almayahi, J. Radiat. Res. Appl. Sci. 8, 389 (2015), doi: 10.1016/j.jrras.2015.02.008
  • [11] U. Akar Tarim, E.N. Ozmutlu, O. Gurler, S. Yalcin, J. Radioanal. Nucl. Chem. 293, 425 (2012), doi: 10.1007/s10967-012-1716-z
  • [12] U. Akar Tarim, E.N. Ozmutlu, O. Gurler, S. Yalcin, J. Radioanal. Nucl. Chem. 295, 901 (2013), doi: 10.1007/s10967-012-2206-z
  • [13] M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: photon cross sections database, NIST standard reference database 8 (XGAM), 2010 http://nist.gov/pml/data/xcom/index.cfm/
  • [14] A.D. Sabharwal, M. Singh, B. Singh, B.S. Sandhu, Appl. Radiat. Isotop. 66, 1467 (2008), doi: 10.1016/j.apradiso.2008.03.006
  • [15] G. Hettinger, Acta Radiolog. 54, 129 (1960), doi: 10.3109/00016926009172533
  • [16] D.B. Pozdneev, At. Energy 20, 317 (1966), doi: 10.1007/BF01127403
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n1060kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.