Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 209-213
Article title

Exergy Analysis of a Combined Power and Cooling Cycle

Title variants
Languages of publication
Ammonia-water power cycles are important for efficient utilization of low temperature heat sources such as geothermal, solar, waste heat sources, etc. For some special conditions ammonia-water power cycle is an important and economical option. This paper presents an exergetic analysis of a combined power and cooling cycle that uses ammonia-water mixture as working fluid. Such cycles, use solar or geothermal energy or waste heat energy from a conventional power cycle. Ammonia-water power cycle can be used as independent cycles to provide power output and cooling. For a range (25-55 Bar) of boiler pressure the performance of the combined power and cooling cycle is investigated. The exergy of the boiler is very low compared to its energy. There is a boiling process and a heat transfer process at low temperature, both of which destruct the energy given to the boiler, so that the energy efficiency is low; however the exergy efficiency is higher than the energy efficiency. Increasing the turbine inlet pressure decreases the energy and exergy efficiencies.
  • Department of Mechanical Engineering, Bayburt University, 69000 Bayburt
  • [1] D.S. Ayou, J.C. Bruno, R. Saravanan, A. Coronas, Renew. Sust. Energ. Rev. 21, 728 (2013), doi: 10.1016/j.rser.2012.12.068
  • [2] H. Cho, A.D. Smith, P. Mago, Appl. Energ. 136, 168 (2014), doi: 10.1016/j.apenergy.2014.08.107
  • [3] A.I. Kalina, J. Eng. Gas Turb. Power 106, 732 (1984)
  • [4] V. Zare, S.M.S. Mahmoudi, M. Yari, Energy 61, 397 (2013), doi: 10.1016/
  • [5] V. Zare, S.M.S. Mahmoudi, M. Yari, Appl. Therm. Eng. 48, 176 (2012), doi: 10.1016/j.applthermaleng.2012.05.009
  • [6] C. Dejfors, E. Thorin, G. Svedberg, Energ. Convers. Manage. 39, 1675 (1998), doi: 10.1016/S0196-8904(98)00087-9
  • [7] J. Wang, Z. Yan, M. Wang, Y. Dai, Energy 50, 513 (2013), doi: 10.1016/
  • [8] J. Wang, J. Wang, P. Zhao, Y. Dai, Energy 117, 335 (2016), doi: 10.1016/j.enconman.2016.03.019
  • [9] M. Jonsson, J. Yan, Energy 26, 31 (2001), doi: 10.1016/S0360-5442(00)00043-8
  • [10] F. Xu, D.Y. Goswami, S.S. Bhagwat, Energy 25, 233 (2000), doi: 10.1016/S0360-5442(99)00071-7
  • [11] R.V. Padilla, G. Demirkaya, D.Y. Goswami, E. Stefanakos, M.M. Rahman, Energy 35, 4649 (2010), doi: 10.1016/
  • [12] F. Xu, Ph.D. Thesis, University of Florida, 1997
  • [13] R. Tillner-Roth, D.G. Friend, J. Phys. Chem. Ref. Data 27, 63 (1998), doi: 10.1063/1.556015
  • [14] G.S. Alamdari, IJE Trans. B: Applications 20, 97 (2007)
  • [15] G.S. Alamdari, IJE Trans. A: Basics 20, 95 (2007)
  • [16] D. Sun, Appl. Therm. Eng. 17, 211 (1997), doi: 10.1016/S1359-4311(96)00041-5
  • [17] K. Annamalai, I.K. Puri, Advanced thermodynamics engineering, CRC Press LLC, 2002
  • [18] I. Dincer, M.A. Rosen, Exergy, energy, environment and sustainable development, 1st ed., Elsevier Ltd., 2007
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.