Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We have determined structural, electronic and optical properties of BBi_{1-x}Sb_x alloy by using density functional theory based on the full potential linearized augmented plane wave method. For the exchange correlation potential, the generalized gradient approximation of Perdew, Burke, and Ernzerhof has been performed. The structural properties, including lattice constants and bulk modulus have been calculated by changing x concentration. We have investigated the effect of composition on lattice constant, bulk modulus and band gap. Properly, direct/indirect band character of BBi_{1-x}Sb_x has been investigated depending on the x concentration. Then we have determined some basic linear optical properties BBi_{1-x}Sb_x alloy in direct band gap region. The obtained results have been compared with available studies. All the calculations have been performed after geometry optimization. As far as we know, no experimental or theoretical data are presently available for the studied ternary alloy BBi_{1-x}Sb_x (0 < x < 1).
Discipline
- 71.20.-b: Electron density of states and band structure of crystalline solids
- 78.20.Ci: Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)
- 71.15.Mb: Density functional theory, local density approximation, gradient and other corrections
Journal
Year
Volume
Issue
Pages
98-100
Physical description
Dates
published
2016-07
Contributors
author
- Sakarya University, Physics Department, Sakarya, Turkey
author
- Sakarya University, Physics Department, Sakarya, Turkey
author
- Sakarya University, Physics Department, Sakarya, Turkey
author
- Sakarya University, Physics Department, Sakarya, Turkey
References
- [1] R.M. Wentzcovitch, M.L. Cohen, P.K. Lam, Phys. Rev. B 36, 6058 (1987), doi: 10.1103/PhysRevB.36.6058
- [2] R.M. Wentzcovitch, K.J. Chang, M.L. Cohen, Phys. Rev. B 34, 1071 (1986), doi: 10.1103/PhysRevB.34.1071
- [3] B. Bouhafs, H. Aourag, M. Ferhat, M. Certier, J. Phys. Condens. Matter 11, 5781 (1999), doi: 10.1088/0953-8984/11/30/309
- [4] B.G. Yalcin, Physica B 462, 64 (2015), doi: 10.1016/j.physb.2015.01.021
- [5] M. Ustundag, M. Aslan, B.G. Yalcin, Comput. Mater. Sci. 81, 471 (2014), doi: 10.1016/j.commatsci.2013.08.056
- [6] B.G. Yalcin, S. Bagci, M. Ustundag, M. Aslan, Comput. Mater. Sci. 98, 136 (2015), doi: 10.1016/j.commatsci.2014.11.010
- [7] A. Zaoui, F. El Haj Hassan, J. Phys. Condens. Matter 13, 253 (2001), doi: 10.1088/0953-8984/13/2/303
- [8] D. Madouri, M. Ferhat, Phys. Status Solidi B 242, 2856 (2005), doi: 10.1002/pssb.200441121
- [9] S. Cui, W. Feng, H. Hu, Z. Feng, Y. Wang, Comput. Mater. Sci. 47, 968 (2010), doi: 10.1016/j.commatsci.2009.11.030
- [10] K. Amara, B. Soudini, D. Rached, A. Boudali, Comput. Mater. Sci. 44, 635 (2008), doi: 10.1016/j.commatsci.2008.04.023
- [11] D. Varshney, G. Joshi, M. Varshney, S. Shriya, Physica B 405, 1663 (2010), doi: 10.1016/j.physb.2009.12.064
- [12] J.C. Slater, Adv. Quant. Chem. 1, 35 (1964), doi: 10.1016/S0065-3276(08)60374-3
- [13] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave plus Local Orbital Program for Calculating the Crystal Properties, 12th ed., WIEN, 2012
- [14] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 7, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
- [15] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
- [16] F. Birch, Phys. Rev. 71, 809 (1947), doi: 10.1103/PhysRev.71.809
- [17] A. Sommerfeld, Naturwissenschaften 22, 49 (1934), doi: 10.1007/BF01498749
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n1024kz