PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 130 | 1 | 51-54
Article title

Experimental Characterization of Antimony Dopant in Silicon Substrate

Content
Title variants
Languages of publication
EN
Abstracts
EN
Ion implantation is a method largely used to fabricate shallow junctions in the surface target. However, the ions are randomly redistributed and a huge damage is generated in the sample. Annealing treatments are thus necessary to restore defects and to activate the dopant. Among several elements, antimony is particularly attractive since it has low diffusivity in silicon which means that is suitable to obtain ultra shallow junctions. Moreover, antimony is attractive in many applications such as the fabrication of transistors and infrared detectors. In this work, the electrical activation of antimony is studied in case of silicon target.
Keywords
EN
Contributors
author
  • Laboratoire de Physique Mathématique et Subatomique, Département de Physique, Faculté des Sciences Exactes, Université Mentouri de Constantine, Route de Ain El Bey, 25000 Constantine, Algeria
author
  • Laboratoire de Physique Mathématique et Subatomique, Département de Physique, Faculté des Sciences Exactes, Université Mentouri de Constantine, Route de Ain El Bey, 25000 Constantine, Algeria
author
  • Centre de Développement des Techniques Nucléaires, 2 Bd Frantz Fanon, BP 399, Alger Gare, Algeria
References
  • [1] H. Herman, J.K. Hirvonen, Treatise on Materials Science and Technology, Ion Implantation, Academic Press, New York 1980
  • [2] G.A. Sai-Halasz, H.B. Harrison, IEEE Electr. Dev. Lett. 7, 534 (1986), doi: 10.1109/EDL.1986.26463
  • [3] E. Murakami, K. Harada, D. Hisamoto, S. Kimura, in: Electron Devices Meeting, IEDM '96, International, IEEE, San Francisco 1996, p. 439, doi: 10.1109/IEDM.1996.553621
  • [4] K. Shibahara, K. Egusa, K. Kamesaki, H. Furomoto, Jpn. J. Appl. Phys. 39, 2194 (2000), doi: 10.1143/JJAP.39.2194
  • [5] C. Revenant-Brizard, J.R. Regnard, S. Solmi, A. Armigliato, S. Valmorri, C. Cellini, F. Romanato, J. Appl. Phys. 79, 12 (1996), doi: 10.1063/1.362636
  • [6] R. Labbani, R. Halimi, Mater. Sci. Eng. B 124-125, 208 (2005), doi: 10.1016/j.mseb.2005.08.009
  • [7] C. Benazzouz, N. Boussaa, S. Behli, M. Zilabdi, S. Tobbech, M. Derdour, Alg. Rev. Nucl. Sci. 2, 119 (1997)
  • [8] J.A. Borders, J.M. Poate, Phys. Rev. B 13, 969 (1976), doi: 10.1103/PhysRevB.13.969
  • [9] W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectroscopy, Academic Press, New York 1978
  • [10] E. Kotai, Nucl. Instrum. Methods Phys. Res. B 85, 588 (1994), doi: 10.1016/0168-583X(94)95888-2
  • [11] J.P. Biersack, L.G. Haggmark, Nucl. Instrum. Methods 174, 257 (1980), doi: 10.1016/0029-554X(80)90440-1
  • [12] J.F. Ziegler, The Stopping and Range of Ions in Matter/TRansport of Ions in Matter, SRIM/TRIM Code, http://www.srim.org
  • [13] R. Labbani, R. Halimi, T. Laoui, A. Vantomme, B. Pipeleers, G. Roebben, Mater. Sci. Eng. B 102, 390 (2003), doi: 10.1016/S0921-5107(02)00630-X
  • [14] J. Narayan, O.W. Holland, Physica Status Solidi A 73, 225 (1982), doi: 10.1002/pssa.2210730129
  • [15] A. Sato, K. Suzuki, H. Horie, T. Sugii, in: Proc. IEEE Int. Conf. Microelectron. Test Struct., IEEE, Nara 1995, p. 259, doi: 10.1109/ICMTS.1995.513984
  • [16] J.F. Letcher, J. Narayan, O.W. Holland, Inst. Phys. Conf. Ser. 60, 265 (1981), doi: 10.1557/PROC-7-117
  • [17] J.S. Williams, Nucl. Instrum. Methods 209/210, 219 (1983), doi: 10.1016/0167-5087(83)90803-7
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv130n1013kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.